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a b s t r a c t

I introduce the HESSIAN (highly efficient simulation smoothing in a nutshell) method for numerically
efficient simulation smoothing in state space models with univariate states. Given a vector θ of
parameters, the vector of states α = (α1, . . . , αn) is Gaussian and the observed vector y = (y1⊤, . . . ,
yn⊤)⊤ neednot be. I describe a procedure to construct a close approximation q(α|θ, y) to the target density
p(α|θ, y). It requires code to compute five derivatives of log p( yt |θ, αt) with respect to αt , t = 1, . . . , n,
and is not otherwise model specific. Since q(α|θ, y) is proper, fully normalised and simulable, it can
be used as an importance density for importance sampling (IS) or as a proposal density for Markov
chain Monte Carlo (MCMC). HESSIAN is an acronym but it also refers to the (sparse) Hessian matrix
of log p(α|θ, y) with respect to α—the HESSIAN method is based on sparse matrix operations rather
than the Kalman filter. I construct q(α|θ, y) and a related approximation q(θ, α|y) of p(θ, α|y) for two
stochastic volatility models, two stochastic count models and a stochastic duration model. I illustrate
their use for numerical approximation of likelihood function values and marginal likelihoods, using IS,
and for posterior inference, using IS and MCMC. Compared with other simulation smoothing methods,
the HESSIANmethod is highly numerically efficient. In an IS application featuring a Student’s t stochastic
volatility model and n = 8851 daily log returns, the efficiency of IS for numerical approximation of the
elements of the posterior mean E[θ |y] is between 80% and 100%.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

I introduce new methods for inference in state space models of
the form

α1 = d0 + u0, αt+1 = dt + φtαt + ut , t = 1, . . . , n, (1)

p( y1, . . . , yn|α1, . . . , αn) =

n
t=1

p( yt |αt), (2)

where the αt are univariate latent states, the ut are independent
Gaussian random variables with mean 0 and variance σ 2

t , the yt
are observable random scalars or vectors, and the p( yt |αt) are
probability density or mass functions. I define α .

= (α1, . . . , αn)
⊤

and y .
= ( y⊤

1 , . . . , y
⊤
n )

⊤. Until further notice, I condition on the
coefficients dt and φt , the variances σ 2

t , and any parameters on
which the p( yt |αt) might depend, and suppress the notation for
this conditioning.

Inference in state spacemodels often proceeds through simula-
tion smoothing, the simulation of the conditional distribution of α
given y. I will call this distribution the target distribution.

The importance of the HESSIAN (highly efficient simulation
smoothing in a nutshell) method lies not only in its high numerical
efficiency for simulation smoothing. It also leads to highly efficient
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joint simulation of states and parameters, for both IS and MCMC,
demonstrated here for several difficult empirical problems, even
compared with model specific methods.

The only model specific elements required to implement the
HESSIAN method are routines to evaluate log p( yt |αt) and its
first five derivatives with respect to αt at a given point. For the
five state space models considered in this paper, it is reasonably
easy to compute analytic derivatives in closed form. These are
tabulated in Appendix I. It may bemore difficult to do this for other
models, but there are two reasons for optimism. First, it is possible
to compute exact derivatives at a point without closed form
analytic expressions. For example, we can use automatic routines
to combine derivatives of primitive functions according to Leibniz’s
rule (for multiple derivatives of products) and Faà di Bruno’s rule
(for multiple derivatives of composite functions). These rules can
be nested. A second reason for optimism is that one can use
numerical derivatives or other approximations. There is a cost in
numerical efficiency, but as long as the evaluation of log p( yt |αt)
is exact, simulation consistency is not compromised. Code for
implementing the HESSIAN method is available on request.
Relationship with other methods. In the special case where the
distributions yt |αt are linear and Gaussian, α|y is multivariate
Gaussian and there are efficientmethods to evaluate the likelihood
function and draw α given y. Carter and Kohn (1994), Frühwirth-
Schnatter (1994), de Jong and Shephard (1995) and Durbin and
Koopman (2002) offer methods based on the Kalman filter. Rue
(2001), Chan and Jeliazkov (2009) and McCausland et al. (2011)
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describe methods based on the sparse Hessian matrix of the log
target density.

When they are not all linear and Gaussian, the target distribu-
tion is no longer multivariate Gaussian, which makes simulation
smoothing much more difficult. I identify three broad approaches
to this problem. The direct approach is to use a Metropolis–
Hastings update for blocks (αt , αt+1, . . . , αt+T−1) of length T ,
where 1 ≤ T ≤ n. The auxiliary mixture model approach involves
transforming the model into a linear Gaussianmodel, approximat-
ing any non-Gaussian distributions in the transformed model by
finite Gaussian mixtures. A third approach is sequential Monte
Carlo, which includes particle filtering.

The HESSIAN method falls squarely in the category of direct
approaches, and is based on operations on the Hessian matrix
of log p(α|y) rather than the Kalman filter. It updates the entire
state sequence α as a single block (T = n) using a non-Gaussian
proposal density q(α|y). The proposal density is a very close
approximation of the target density—whenused as a independence
Metropolis–Hastings proposal density for a Student’s t SV model
and a data set with n = 8851 observations, the acceptance
probability was 0.9985.

I now review in some detail the three approaches to simulation
smoothing in non-Gaussian or non-linear models, starting with
the direct approach. Jacquier et al. (1994) introduce a posterior
simulator with T = 1 for a Gaussian SV model. An advantage
of such ‘‘single-move’’ simulators is that it is relatively easy to
choose a suitable non-Gaussian proposal distribution to closely fit
the univariate target distribution. The main disadvantage is low
numerical efficiency due to the high posterior autocorrelation of
log volatility.

Shephard and Pitt (1997), Watanabe and Omori (2004), Strick-
land et al. (2006), Jungbacker and Koopman (2008) and Omori and
Watanabe (2008) use block lengths with 1 < T < n and multi-
variate Gaussian proposal distributions. Optimal ‘‘block’’ simula-
tors are typically considerably more efficient than single-move
simulators. For small enough T , putting highly correlated random
variables in the same blockmore than compensates for the inflexi-
bility of the multivariate Gaussian distribution. Omori andWatan-
abe (2008) analyse numerical efficiency for a Gaussian SV model
with asymmetric volatility and artificial data. They compare a ran-
dom block sampler with a single move sampler similar to that of
Jacquier et al. (2004), but adapted to a slightly different model.
For computing posterior means of parameters, the former is about
2.7–15.1 times more efficient.

Shephard and Pitt (1997) and Durbin and Koopman (1997)
consider a multivariate Gaussian approximation of the full target
distribution. Its mean is the mode of the target distribution and
its variance is the negative inverse Hessian of the log target
density at themode. Shephard and Pitt (1997) ultimately reject this
approximation as perhaps ‘‘too ambitious’’ for SV models, citing
rapid deterioration in the numerical efficiency of block simulators
as T increases. Durbin and Koopman (1997) use the multivariate
Gaussian approximation for IS. While numerical efficiency is low,
they are able to increase it using antithetic sampling and control
variates. However, their empirical application involves only n =

192 observations, much less than the numbers of observations
found in SV applications. See alsoGamerman (1998) andPitt (2000)
on the difficulties of using a multivariate Gaussian approximation
as a proposal or importance distribution.

Feasibility and numerical efficiency depend very much on how
close the approximation q(α|y) is to the target density p(α|y), and
there exist closer approximations than the multivariate Gaussian.
Richard and Zhang (2007) describe one, which they use for
Efficient Importance Sampling (EIS). Richard and Zhang (2007) and
Liesenfeld and Richard (2003, 2006) consider applications of EIS to
SV and other models. For state space models, the analyst supplies
an auxiliary parametric importance sampler based on parametric
approximations to the conditional densities p(αt |αt+1, y). The
state space model is not required to be univariate or Gaussian,
but the parametric approximations have to be well tailored to
the target distribution for tolerable numerical precision with large
data sets. Parameters of the approximation are determined using
an iterative procedure which depends on the Common Random
Numbers (CRNs) used to draw from the approximate distribution.
The approximate density and the draws are thus jointly random,
and EIS is not, strictly speaking, importance sampling. As Richard
and Zhang (2007) acknowledge, EIS estimators of integrals with
respect to the target distribution, such as values of the likelihood
function, may be biased and the usual formula for the variance
of IS estimators of integrals does not apply. To estimate standard
errors, they use replications of sample means, with CRNs that are
independent across replications.

Rue et al. (2004) also describe improvements to themultivariate
Gaussian approximation. Their approximation applies in the more
general context of hidden Gaussian Markov random fields, but
requires costly simulations to compute.

The second broad approach to simulation smoothing in non-
linear and non-Gaussian state space models is auxiliary mixture
sampling. Using transformations, data augmentation and the
approximation of non-Gaussian error distributions by finite
Gaussian mixtures, one can sometimes obtain an auxiliary mixture
model with the property that conditioning on auxiliary variables,
including latent variables used as mixture component indicators,
yields a Gaussian linear state space model. Using Gibbs sampling
and standard methods for Gaussian linear state space models,
one can simulate the joint distribution of parameters, states and
auxiliary variables. Kim et al. (1998), Chib et al. (2002) and
Omori et al. (2007) use auxiliary mixture sampling for various SV
models. Stroud et al. (2003) use it for Gaussian, but non-linear,
state space models with state dependent variances; Frühwirth-
Schnatter and Wagner (2006) for state space models with Poisson
counts; and Frühwirth-Schnatter and Frühwirth (2007) for logit
and multinomial logit models. Frühwirth-Schnatter et al. (2009)
offer efficiency improvements for some of these models.

Drawing all states as a block is numerically efficient because
states tend to have high posterior autocorrelation. Combining
states and parameters in a compound block can lead to further
numerical efficiency improvements if the parameters and states
have strong posterior dependence. Kim et al. (1998) obtain
considerably higher numerical efficiency for a basic Gaussian
SV model when they draw parameters and states together in
an approximate transformed model. Simulation experiments in
Omori et al. (2007) (auxiliary mixture sampling) and Omori
and Watanabe (2008) (direct approach, with 1 < T < n) show
something similar for an SV model with asymmetric volatility.
Since this is true despite the fact that Kim et al. (1998) and Omori
et al. (2007) use data augmentation in order to draw parameters
and the full state vector as a block suggests that the reported
efficiency improvements understate the advantage of drawing
states and parameters as a block.

The approximation of distributions by finite Gaussian mixtures
introduces error, which, if not compensated, compromises the
simulation consistency of MCMC sample means. Simulation
consistency can often be obtained through IS reweighting, as in
Kim et al. (1998) and Omori et al. (2007), or through a Metropolis–
Hastings accept/reject, as in Stroud et al. (2003), Frühwirth-
Schnatter and Wagner (2006) and Frühwirth-Schnatter and
Frühwirth (2007). The cost is typically a reduction in numerical
precision and simplicity.

The third broad approach to simulation smoothing relies on
sequential Monte Carlo methods. Doucet and Johansen (2010)
review the literature on particle filtering and smoothing. They
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survey three approaches to particle smoothing and describe how
to approximate likelihood values using the bi-products of particle
filtering. These techniques are computationally demanding, but of
course they deliver more, including numerical approximations of
filtering distributions.

Rue et al. (2009) is also relevant to the problem of simulation
smoothing. They approximate marginal densities of latent vari-
ables for latent Gaussian Markov models, including state space
models with Gaussian states. The computational cost is O(n2) for
the special case of state space models, but since there is no sim-
ulation whatsoever, computations are very rapid. The paper uses
a Laplace approximation of the marginal posterior density p(θ |y),
where θ is a vector of parameters. The approximation of p(θ |y) is
proportional to p(θ)LG(θ; y), where LG(θ; y) is the Laplace approx-
imation, defined in Section 3, of the likelihood function L(θ; y).
We will see that for stochastic volatility models, the approxima-
tion error can be considerable and depend on θ . The approach
of Rue et al. (2009) does not rely on any particular approxima-
tion, however, and Section 4 shows that a simulation consistent
stochastic alternative L̂H(θ; y), based on the HESSIAN approxima-
tion q(α|θ, y), has very high numerical precision for the example
considered. Since the cost of computing L̂H(θ; y) isO(n), thiswould
not be particularly onerous. Importantly, L̂H(θ; y) has attractive
and better understood properties. Using L̂H(θ; y) instead of L(θ; y)
would allay some of the concerns about Laplace approximations
put forward by Robert (2009) in his discussion of Rue et al. (2009),
at least for the special case of state space models.
Outline. I describe the construction of q(α|y) in Section 2. Since
one can evaluate and sample q(α|y) exactly, standard results
on simulation error for IS and MCMC hold. I also show that
the ratio p(α|y)/q(α|y) is bounded. In the context of IS, this
guarantees the boundedness of importance weights, an important
condition for the existence of the variance of importance sample
means: see Geweke (1989). In the context of independence
Metropolis–HastingsMarkov chains, this guarantees the geometric
ergodicity of the Markov chain: see Roberts and Rosenthal (1998).

The term ‘‘HESSIAN method’’ refers to the use of the approx-
imation q(α|y) for simulation smoothing and numerical integra-
tion. Section 3 shows how to do this. We are not limited to using
q(α|y) directly as an importance density or a proposal density. We
can combine it with other densities to obtain joint importance and
proposal densities for α and other unknown variables such as pa-
rameters.Much of the efficiency advantage of theHESSIANmethod
lies in doing this.

In Section 4, I discuss the results of simulation experiments and
empirical applications using data. In the simulation experiments,
I subject my computer code to stringent tests of correctness
of the kind described in Geweke (2004). I use the empirical
applications to compare the HESSIAN method with competing
methods, sometimes using the same data that were used to
illustrate those methods. I illustrate the high numerical efficiency
that can be obtained using the HESSIAN method by comparing
the numerical precision it achieves with that of other methods in
the literature. In Section 5, I conclude and mention some possible
extensions.

2. The HESSIAN approximation q(α|y)

Here I show how to construct the HESSIAN approximation
q(α|y) of the target density p(α|y) for a given state space model.
I describe how to evaluate and sample q(α|y) exactly using O(n)
operations. I establish that the density q(α|y) is proper and fully
normalised, and that the ratio p(α|y)/q(α|y) is bounded.

I take as input a state space model of the form in (1) and (2). It
is convenient to express the state dynamics concisely in terms of
the precision (inverse of variance) Ω̄ and covector (precision times
mean) c̄ of α. Appendix A shows how to compute the O(n) non-
zero elements of Ω̄ and c̄ as a function of the values dt , φt and σ 2

t
in (1). As for the specification of (2), I require routines to compute
the value and first five derivatives of ψt(αt)

.
= log p( yt |αt)

with respect to αt . Appendix I gives analytic expressions for five
different state space models.

Notation introduced in this section is summarised in Table 1.

2.1. Overview of the approximation

Like the target density p(α|y), q(α|y) has the Markov property,
which allows us to factor it as

q(α|y) = q(αn|y)
1

t=n−1

q(αt |αt+1, y).

To draw from or evaluate q(α|y), we draw from or evaluate each
factor, beginningwith q(αn|y) and endingwith q(α1|α2, y). At each
iteration t < n, the value of αt+1 is available.

Approximations rely heavily on Taylor series expansions, some
exact and some approximate, of various functions. Most of these
expansions are computed during a forward pass, around a static
point of expansion: for functions of αt+1, the point of expansion
is at+1, where (a1, . . . , an) is the mode of the target distribution.
Examples of these functions are bt|t+1(αt+1) and µt|t+1(αt+1),
which denote the mode and mean of αt given αt+1 and y.

During the backward pass, we compute an approximate Taylor
series expansion of hn(αn)

.
= log p(αn|y) and each ht(αt;αt+1)

.
=

log p(αt |αt+1, y). The notation for ht(αt;αt+1) indicates that we
treat it as a univariate function of αt with parameter αt+1. For
ht(αt;αt+1), the point of expansion is a moving target: it depends
on αt+1. The expansion is fifth order, which allows us to go well
beyond a quadratic (i.e. Gaussian) approximation.

I use a parametric family of perturbed Gaussian densities
ppert(·;ϑ), described in Appendix G, for the q(αt |αt+1, y) and
q(αn|y). The parameter vector ϑ includes b, which gives the
mode of ppert(·;ϑ), and h2, h3, h4 and h5, which give the second
through fifth derivatives of log ppert(·;ϑ) at b. The family ppert(·;ϑ)
is particularly suitable: if we have a fifth order Taylor series
expansion of some log density around its mode, we can choose
ϑ so that the fifth order Taylor series expansion of log ppert(·;ϑ)
matches exactly.

Constructing q(αn) and the q(αt |αt+1, y) amounts to choosing
appropriate values of ϑ . The mode of q(αn|y) approximates the
mode of p(αn|y), denoted bn, and the mode of q(αt |αt+1, y)
approximates the mode of p(αt |αt+1, y), denoted bt|t+1(αt+1). The
derivative parameters are set to approximations of the second
through fifth derivatives of hn(αn) and ht(αt;αt+1).

The following key result, proved in Appendix C, gives exact
expressions for the first derivatives of the ht(αt;αt+1) and hn(αn):

h′

t(αt;αt+1) =

−Ω̄11α1 − Ω̄12α2 + c̄1 + ψ ′

1(α1), t = 1,
−Ω̄t−1,tµt−1|t(αt)− Ω̄ttαt − Ω̄t,t+1αt+1

+ c̄t + ψ ′

t (αt), 1 < t < n,
(3)

h′

n(αn) = −Ω̄n−1,nµn−1|n(αn)− Ω̄nnαn + c̄n + ψ ′

n(αn), (4)

where µt−1|t(αt)
.
= E[αt−1|αt , y]. One can compute the value

and four derivatives of everything in these expressions except
µt−1|t(αt), t = 2, . . . , n.

If we knew bn and the functions bt|t+1(αt+1) and µt−1|t(αt),
we could compute exact fifth order Taylor series expansions of
ht(αt;αt+1) and hn(αn) at bt|t+1(αt+1) and bn. Unfortunately,wedo
not. Instead, I will approximate the bt|t+1(αt+1) and µt|t+1(αt+1)
by polynomials Bt|t+1(αt+1) and Mt|t+1(αt+1). These polynomials
are approximate Taylor series expansions of bt|t+1(αt+1) and
µt|t+1(αt+1) around at+1.
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Table 1
Table of definitions.

Notation Description

a = (a1, . . . , an) Conditional mode of α given y
Σt Var[αt |αt+1, y] for 1st reference distribution. See (7)

(a1|t+1(αt+1), . . . , at|t+1(αt+1)) Conditional mode of α1, . . . , αt given αt+1 and y
ȧt , ät ,

...
a t ,

....
a t Four derivatives of at|t+1(αt+1) at αt+1 = at+1

Σt|t+1(αt+1) Var[αt |αt+1, y] for 2nd reference distribution. See (8)
st|t+1(αt+1) logΣt|t+1(αt+1)

st , ṡt , s̈t ,
...
s t Value and three derivatives of st|t+1(αt+1) at at+1

bt|t+1(αt+1) Conditional mode of αt given αt+1 and y
bt , ḃt , b̈t ,

...
b t ,

....
b t Value and four derivatives of bt|t+1(αt+1) at αt+1 = at+1

bn Conditional mode of αn given y
Bt|t+1(αt+1) Polynomial approximation of bt|t+1(αt+1) given by (9)
Bt , Ḃt , B̈t ,

...
Bt ,

....
B t , Bn Approximations of bt , ḃt , b̈t ,

...
b t ,

....
b t , bn , see Appendix E

µt|t+1(αt+1) E[αt |αt+1, y]
µt , µ̇t , µ̈t ,

...
µt ,

....
µt Value and four derivatives of µt|t+1(αt+1) at at+1

Mt|t+1(αt+1) Polynomial approximation of µt|t+1(αt+1) given by (10)
Mt , Ṁt , M̈t ,

...
M t ,

....
M t Approximations of µt , µ̇t , µ̈t ,

...
µt ,

....
µt , see Appendix F

ψt (αt ) log p( yt |αt )

ht (αt ;αt+1), h′
t (αt ;αt+1) log p(αt |αt+1, y) and first derivative with respect to αt

h( j)t (αt ), j ≥ 2 j’th derivative of ht (αt ;αt+1)with respect to αt
hn(αn) log p(αn|y)
h( j)n (αn), j ≥ 1 j’th derivative of hn(αn)with respect to αn
H ′

t (αt ;αt+1) Approximation of h′
t (αt ;αt+1) given by (5)

H ′
n(αn) Approximation of h′

n(αn) given by (6)
H( j)t (αt ), j ≥ 2 Approximation of h( j)t (αt ) implied by (5) and (6)
The approximation of µt−1|t(αt) by Mt−1|t(αt) leads to the
following approximations of ht(αt;αt+1) and hn(αn):

H ′

t(αt;αt+1)
.
=

−Ω̄11α1 − Ω̄12α2 + c̄1 + ψ ′

1(α1), t = 1,
−Ω̄t−1,tMt−1|t(αt)− Ω̄ttαt − Ω̄t,t+1αt+1

+ c̄t + ψ ′

t (αt), 1 < t < n,
(5)

H ′

n(αn)
.
= −Ω̄n−1,nMn−1|n(αn)− Ω̄nnαn + c̄n + ψ ′

n(αn). (6)

One can compute the value and four derivatives of H ′
n(αn) and the

H ′
t(αt;αt+1) at any point. Choosing a suitable point of expansion

and evaluating the second through fifth derivatives of Hn(αn) or
Ht(αt;αt+1) there give the parameter values required to specify
q(αn|y) or q(αt |αt+1, y).

In the remainder of this section I give more detail on how to
evaluate q(α|y), sample it, or both. There are three main steps.
The first step is to find the conditional mode a = (a1, . . . , an)
of α given y, and related quantities. The second step is a forward
pass to construct polynomials Bt|t+1(αt+1) and Mt|t+1(αt+1), t =

1, . . . , n − 1. The third step is a backward pass. At period t < n
of the backward pass, we can evaluate q(αt |αt+1, y), sample it, or
both. The next three sections describe the three main steps. Full
technical detail is left to various appendices.

2.2. Preliminary computation

The first step is to find the mode a = (a1, . . . , an) of the target
distribution and compute the bi-products ¯̄Ω and Σ1, . . . ,Σn,
described below. The elements of a serve as points of expansion
for the computations of the forward pass. I use an efficient
implementation of the Newton–Raphson algorithm, described in
Appendix B, to compute a and the bi-products.

¯̄Ω is the Hessian matrix of − log(α|y) with respect to α,
evaluated at a. Since p(α|y) ∝ p(α)p( y|α), we can write

¯̄Ω = Ω̄ −
∂2 log p( y|α)
∂α∂α⊤

.

The second term is diagonal, so there are only O(n) elements
to store. Computations described in technical appendices rely on
operations involving this sparse Hessian matrix.
The variances Σ1, . . . ,Σn are based on the distribution N(a,
¯̄Ω

−1
), a multivariate Gaussian approximation of the target

distribution: both distributions have the same mode a and both
log densities have the sameHessianmatrix−

¯̄Ω there. Result 2.1 of

McCausland et al. (2011) implies that if α̃ ∼ N(a, ¯̄Ω
−1
), then α̃n ∼

N(an,Σn) and α̃t |α̃t+1 ∼ N(at − ¯̄Ω t,t+1Σt α̃t+1,Σt) for t = n− 1,
. . . , 1, whereΣt is given by the forward recursion

Σ1
.
=

¯̄Ω
−1

11 , Σt
.
= ( ¯̄Ω tt −

¯̄Ω
2

t,t−1Σt−1)
−1, t = 2, . . . , n. (7)

2.3. A forward pass

The purpose of the forward pass is to construct polyno-
mial approximations Bt|t+1(αt+1) and Mt|t+1(αt+1) of bt|t+1(αt+1)
and µt|t+1(αt+1). A very useful intermediate step is to con-
struct a polynomial approximation of the function at|t+1(αt+1),
where (a1|t+1(αt+1), . . . , at|t+1(αt+1)) is the conditional mode
of α1, . . . , αt given αt+1 and y. Then direct approximations of
bt|t+1(αt+1)− at|t+1(αt+1) andµt|t+1(αt+1)− bt|t+1(αt+1) give in-
direct approximations of bt|t+1(αt+1) and µt|t+1(αt+1).

The main advantage of passing through at|t+1(αt+1) is that we
can compute exact derivatives of at|t+1(αt+1) at at+1 and therefore
an exact Taylor series expansion of at|t+1(αt+1) around at+1. Not
surprisingly, at|t+1(αt+1) is typically much more sensitive to αt+1
than are bt|t+1(αt+1)−at|t+1(αt+1) andµt|t+1(αt+1)−bt|t+1(αt+1).
In this sense, the most important terms of the expansions of
bt|t+1(αt+1) and µt|t+1(αt+1) are exact.

As another intermediate step, I compute exact derivatives of
st|t+1(αt+1)

.
= logΣt|t+1(αt+1) at αt+1, where Σt|t+1(αt+1) is the

final value in the recursion

Σ1|t+1
.
=

¯̄Ω
−1

11 , Στ |t+1
.
= ( ¯̄Ωττ −

¯̄Ω
2

τ ,τ−1Στ−1|t+1)
−1,

τ = 2, . . . , t. (8)

Here, ¯̄Ω1:t|t+1 is the Hessian of− log p(α1, . . . , αt |αt+1, y)with re-
spect to (α1, . . . , αt) at (a1|t+1(αt+1), . . . , at|t+1(αt+1)). Result 2.1
of McCausland et al. (2011) implies that if α̃|αt+1 ∼ N((a1|t+1

(αt+1), . . . , at|t+1(αt+1)),
¯̄Ω

−1

1:t|t+1), then α̃t |αt+1 ∼N(at|t+1(αt+1),
Σt|t+1(αt+1)).
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In the forward pass, I compute the coefficients of polyno-
mial approximations of the functions at|t+1(αt+1), st|t+1(αt+1),
bt|t+1(αt+1) and µt|t+1(αt+1). I perform these steps for t = 1, . . . ,
n − 1:
(1) Compute the following derivatives of at|t+1(αt+1) and st|t+1

(αt+1) at at+1:
ȧt
.
= a′

t|t+1(at+1), ät
.
= a′′

t|t+1(at+1),

...
a t
.
= a′′′

t|t+1(at+1),
....
a t

.
= a(4)t|t+1(at+1),

ṡt
.
= s′t|t+1(at+1), s̈t

.
= s′′t|t+1(at+1),

...
s t
.
= s′′′t|t+1(at+1).

Appendix D shows how to compute these exactly in terms of
ȧt−1 through

....
a t−1 and ψ ′

t (at) through ψ
(5)
t (at). Eqs. (41) and

(44)–(46) give expressions for ȧt , ät ,
...
a t and

....
a t . Eqs. (48)–(50)

give expressions for ṡt , s̈t and
...
s t .

(2) Compute approximations Bt , Ḃt , B̈t ,
...
Bt and

....
B t to the value

and first four derivatives of bt|t+1(αt+1) at at+1, and an
approximation Bn to the value of bn. Appendix E defines these
approximations and shows how to compute them in terms of
ȧt , ät ,

...
a t ,

....
a t , ṡt , s̈t ,

...
s t , Mt−1, Ṁt−1 and M̈t−1. While Mt−1, Ṁt−1

and M̈t−1 are computed at step 3 below, they are lagged values,
available at iteration t . Eqs. (52)–(57) give expressions for Bt ,
Ḃt , B̈t ,

...
Bt ,

....
B t and Bn.

(3) Compute approximations Mt , Ṁt , M̈t ,
...
M t and

....
M t to the value

and first two derivatives of µt|t+1(αt+1) at at+1. Appendix F
defines these approximations and shows how to compute
them in terms of Bt , Ḃt , B̈t ,

...
Bt and

....
B t . Eqs. (59)–(62) give

expressions forMt , Ṁt , M̈t ,
...
M t and

....
M t .

The polynomial approximations Bt|t+1(αt+1) and Mt|t+1(αt+1)
of bt|t+1(αt+1) and µt|t+1(αt+1) are approximate Taylor series
expansions, defined by

Bt|t+1(αt+1)
.
= Bt + Ḃt(αt+1 − at+1)+

1
2
B̈t(αt+1 − at+1)

2

+
1
6
...
Bt(αt+1 − at+1)

3
+

1
24

....
B t(αt+1 − at+1)

4, (9)

Mt|t+1(αt+1)
.
= Mt + Ṁt(αt+1 − at+1)+

1
2
M̈t(αt+1 − at+1)

2

+
1
6
...
M t(αt+1 − at+1)

3
+

1
24

....
M t(αt+1 − at+1)

4.

(10)

2.4. Backward pass

The next step is a backward pass to evaluate q(α|y), draw from
it or both. Using the coefficients computed during the forward pass,
I construct fully normalised densities q(αn|y) and q(αt |αt+1, y)
approximating p(αn|y) and p(αt |αt+1, y).

We perform the following steps at iteration t , t = n, n − 1,
. . . , 1. For t = n, we take Bt|t+1(αt+1) to mean Bn. For t < n, αt+1
is known.
(1) Evaluate Bt|t+1(αt+1), a first approximation of bt|t+1(αt+1),

using (9).
(2) Compute B̃t , a refined approximation of bt|t+1(αt+1), using an

approximate Newton–Raphson step:

B̃t
.
= Bt|t+1(αt+1)−

H ′
t(Bt|t+1(αt+1);αt+1)

H ′′
t (Bt|t+1(αt+1))

.

(3) Compute H ′′
t (B̃t), H ′′′

t (B̃t), H
(4)
t (B̃t) and H(5)t (B̃t) using (5).

(4) Set b = B̃t , h2 = H ′′
t (B̃t), h3 = H ′′′

t (B̃t), h4 = H(4)t (B̃t) and
h5 = H(5)t (B̃t). Setσ 2

tail to a value greater than the prior variance
Var[αt |αt+1]. In Section 4, I use σ 2

tail = 1.01Var[αt |αt+1]. Set
other parameters of ϑ as recommended in Appendix G.

(5) Draw from and/or evaluate q(αt |αt+1, y)
.
= ppert(αt |ϑ).
As shown in Appendix G, setting σ 2
tail to a value greater

than Var[αt |αt+1] guarantees that p(αt |αt+1)/q(αt |αt+1, y) is
bounded. This in turn guarantees that the ratio p(αt |αt+1, y)/
q(αt |αt+1, y) is bounded. Since this is true for all t , p(α|y)/q(α|y)
is bounded.

3. Applications of the HESSIAN approximation

Starting in this section, I will be explicit about conditioning
on parameters of the state space model, denoted θ . The HESSIAN
approximation q(α|θ, y) can be used as an importance density
for IS, a proposal density for MCMC, and for Laplace-like
approximations. An important theme of this section is that
q(α|θ, y) can be combined with other densities to obtain joint
importance and proposal densities.

3.1. Importance sampling

We can use q(α|θ, y) as an importance density to compute
approximations of the likelihood function L(θ; y) = p( y|θ) and
other integrals with respect to p(α|θ, y). If α(1), . . . , α(M) is a
random sample from the HESSIAN approximation then the sample
mean of the importance weights

wm
.
=

p(α(m)|θ)p( y|θ, α(m))
q(α(m)|θ, y)

, m = 1, . . . ,M,

converges to L(θ; y). Since p(α|θ, y)/q(α|θ, y) is bounded, the
variance of the weights is finite. If the posterior expectation
E[g(α)|θ, y] of a function of interest g exists, then

M
m=1wm

g(α(m))/
M

m=1wm is a consistent estimator of E[g(α)|θ, y].
Geweke (1989) describes how to compute numerical standard
errors and numerical efficiency.

The HESSIAN approximation can be combined with an approx-
imation q(θ |y) of the marginal posterior p(θ |y) to give an im-
portance density for integration with respect to p(θ, α|y). For
example, we can compute the following approximation of the
marginal likelihood p( y) using a random sample {θ (m), α(m)}Mm=1
from q(θ |y)q(α|θ, y):

p̂( y) .=
1
M

M
m=1

p(θ (m), α(m), y)
q(θ (m)|y)q(α(m)|θ (m), y)

→ Eq


p(θ, α, y)

q(θ |y)q(α|θ, y)


= p( y), (11)

where Eq denotes expectation with respect to the approximate
density q(α|θ, y). If p(θ |y)/q(θ |y) is bounded, then the importance
weights have bounded variance and we can estimate the variance
σ̂ 2
p of the estimator p̂( y) as the sample variance of the importance

weights p(θ (m), α(m), y)/[q(θ (m)|y)q(α(m)|θ (m), y)] divided by M .
Then the delta method approximation of the numerical standard
error for log p̂( y) is σ̂p/p̂( y).

3.2. Markov chain Monte Carlo

We can also use q(α|θ, y) as a proposal density for an
MCMC block updating the conditional distribution of α given
θ and y. Drawing α as a single block is more numerically
efficient than single-move and block samplers when the posterior
autocorrelation of states is high.

If the posterior dependence between θ and α is also high,
further gains in numerical efficiency are possible by updating θ and
α jointly in a way that preserves the conditional distribution of θ
and α given y.

We can do this as a standard Metropolis–Hastings update if we
have a proposal distribution q(θ∗

|θ, y) for θ . The joint proposal is
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then q(θ∗, α∗
|θ, y) .= q(θ∗

|θ, y)q(α∗
|θ∗, y). We first draw θ∗ from

q(θ∗
|θ, y), then draw α∗ from q(α∗

|θ∗, y), then accept (θ∗, α∗)
with probability

π(θ∗, α∗, θ, α)

.
= min


1,

p(θ∗)p(α∗
|θ∗)p( y|θ∗, α∗)

p(θ)p(α|θ)p( y|θ, α)
·

q(θ |θ∗, y)q(α|θ, y)
q(θ∗|θ, y)q(α∗|θ∗, y)


.

The boundedness of p(α|θ, y)/q(α|θ, y) guarantees the geo-
metric ergodicity of a Metropolis–Hastings chain for the target
density p(α|θ, y) using q(α|θ, y) as a proposal. If we choose an in-
dependence proposal q(θ∗

|θ, y) = q(θ∗
|y) such that p(θ |y)/q(θ |y)

is bounded, then the resulting chain is geometrically ergodic.

3.3. Laplace-like approximations

We obtain a Laplace approximation of the likelihood function
L(θ; y) = p( y|θ) by replacing p(α|θ, y) in the right hand side of
the identity

p( y|θ) ≡
p(α|θ)p( y|θ, α)

p(α|θ, y)
(12)

with a Gaussian approximation qG(α|θ, y) and evaluating the right
hand side at the posterior mode a. The mean of qG(α|θ, y) is a and
the variance is such that log qG(α|θ, y) and log p(α|θ, y) have the
same Hessian at a.

Replacing p(α|θ, y)with the HESSIAN approximation q(α|θ, y)
instead gives the approximation

LH(θ; y)
.
=

p(α|θ)p( y|θ, α)
q(α|θ, y)


α=a
. (13)

It is difficult to assess the error of Laplace and similar approxima-
tions, except by direct comparison with methods known to work,
and I so would advise caution. The results of Section 4 suggest that
LH(θ; y) is a much better approximation than the Laplace approxi-
mation. Since LH(θ; y) is easily evaluated, it is useful for computing
approximate derivatives of L(θ; y)—we see an example in the next
section.

4. Simulations and empirical illustrations

In this section, I illustrate the use of theHESSIAN approximation
q(α|θ, y) for simulation smoothing, both as an importance density
for IS and as a proposal density for MCMC. Simulations described
in this section run on a Macintosh mini, mid 2010, with an Intel
Core 2 Duo 2.4 GHz processor. Source code is written in C and is
available on request.

4.1. Getting it right

The first illustration is an artificial data experiment intended
as a test for the correctness of computer code for the evaluation
of q(α|θ, y) and the simulation of random variates from q(α|θ, y).
The tests described here are similar to tests of posterior simulator
correctness in Geweke (2004), and the title of this section comes
from the title of that paper.

I illustrate using a basic stochastic volatility model with
Student’s t innovations. The log volatility state is governed by

α1 = ᾱ + u0, αt+1 = (1 − φ)ᾱ + φ αt + ut , (14)

where the ut are independent, with u0 ∼ N(0, σ 2/(1 − φ2)) and
ut ∼ N(0, σ 2). I give the elements of Ω̄ and c̄ for this stationary
state model in Appendix A. Log asset returns are given by

yt |θ, αt ∼ t(0, exp(αt), ν), (15)
where ν is an unknown degrees of freedom parameter. I give
expressions for the ψt(αt)

.
= log p( yt |αt , θ) and their first five

derivatives in Appendix I.
I fixed the parameter values µ = −9.0, φ = 0.97, σ = 0.20,

and ν = 12.0. I chose a number n = 20 of observations. I
generated an MCMC sample {α(m), y(m)}Mm=1, with M = 108, from
the conditional distribution of α and y given θ , using a Gibbs
sampler with two blocks. The first block updates α, and the
independence proposal density is the HESSIAN approximation
q(α|θ, y). The second block updates y by direct simulation
from (15). The initial draw comes directly from the conditional
distribution of α and y given θ .

Under the hypothesis that the code works correctly, the
marginal distribution of each α(m) is N(Ω̄−1c̄, Ω̄−1). This implies
that for all m = 1, . . . ,M and all q ∈ (0, 1), the following indica-
tors are Bernoulli with probability parameter q:

I(m)t,q
.
= 1


α
(m)
t − ᾱ

σ/

1 − φ2

≤ Φ−1(q)


, t = 1, . . . , n,

I(m)t|t−1,q
.
= 1


α
(m)
t − (1 − φ)ᾱ − φα

(m)
t−1

σ
≤ Φ−1(q)


,

t = 2, . . . , n,

where Φ is the cumulative distribution function of the standard
Gaussian.

I used sample means of the I(m)t,q and I(m)t|t−1,q to test the hypothe-
ses that the corresponding populationmeans are equal to q. I com-
puted time series numerical standard errors with the R package
coda, then constructed symmetric 95% and 99% intervals based on
an asymptotic Gaussian approximation. The 95% interval did not
include q in 11 cases out of 351 (3.13%) and the 99% interval in-
cluded q in every case. The sample mean always lay in the interval
[q − 0.00013, q + 0.00013]. These results fail to cast doubt on the
correctness of the implementation.

4.2. Exchange rates

I now illustrate the numerical estimation of values of the
likelihood function for exchange rate data. The data consist of log
returns for the Deutschmark in US dollars. The series runs from
January 2, 1980 to May 31, 1990 and consists of 2613 daily log
returns. The data are similar to data used by Kim et al. (1998),
Shephard and Pitt (1997) and Liesenfeld and Richard (2006) and
originate from the Board of Governors of the US Federal Reserve
System. They were kindly supplied by Éric Jacquier and Nicholas
Polson.

I use the Gaussian SV model in Liesenfeld and Richard (2006).
State dynamics are given by (14) and log returns yt by

yt |θ, αt ∼ N(0, exp(αt)).

I performed the following computational experiment. I used
four different methods to approximate a cross section of the
likelihood function L(θ; y) on a grid. I kept ᾱ and φ fixed at
their maximum likelihood values and used the following grid of
17 values of σ : 0.12, 0.12375, 0.1275, . . . , 0.18. The maximum
likelihood estimate for σ , denoted σ̂ , is approximately 0.147. I use
the notation L(σ ; y) for the restriction of L(θ; y) to the grid.

Let L̂H(σ ; y) be the IS estimator of L(σ ; y) using the HESSIAN
approximation as an importance density. Let L̂EIS(σ ; y) be the Ef-
ficient Importance Sampling estimator of L(σ ; y)—as in Liesenfeld
and Richard (2006), I used a Gaussian auxiliary parametric impor-
tance sampler, three EIS iterations to compute its parameters and
M = 30 trajectories. Finally, let LG(σ ; y) be the Laplace approxi-
mation of L(σ ; y) and LH(σ ; y) be the Laplace-like approximation
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using the HESSIAN approximation. Both LG(σ ; y) and LH(σ ; y) are
described in Section 3.

Fig. 1 show the results. The approximation errors log LG(σ ; y)−
log L(σ ; y) (left panel) and log LH(σ ; y) − log L(σ ; y) (right panel)
are plotted as dot-dashed lines. The left panel also shows the
sample mean and quantiles 0.01, 0.05, 0.95 and 0.99 of the error
log L̂EIS(σ ; y) − log L(σ ; y), based on R = 5000 replications of
L̂EIS(σ ; y). As Liesenfeld and Richard (2006) recommend, Common
Random Numbers (CRNs) were used for all values of σ within
a replication, and CRNs are independent across replications.
The right panel shows the mean and quantiles of the error
log L̂H(σ ; y) − log L(σ ; y), also for M = 30. These are based on
an asymptotic Gaussian approximation obtained using a larger
sample, with M = 20, 000. The larger sample also gives very
precise and unbiased numerical estimates of L(σ ; y) used to
compute the errors of other methods.

The EIS estimator log L̂EIS(σ ; y) is biased, and the bias depends
on σ . For M = 30, the bias has roughly the same order of
magnitude as the numerical standard error. For the same number
of draws, the variance of log L̂EIS(σ ; y) is well over four orders of
magnitude higher than that of log L̂H(σ ; y). According to timing
experiments, the latter takes about 3.40 times as much processor
time, so the overall efficiency ratio is about four orders of
magnitude in favour of L̂H(σ ; y).

Since I use rejection sampling to draw from q(α|θ, y), L̂H(θ; y)
is not continuous in θ for fixed primitive random variates, as
L̂EIS(σ ; y) is. This makes the CRN technique less effective for
computing L̂H(θ; y). However, LH(θ; y) is continuous in θ . For
the example above, the error LH(σ ; y) − L(σ ; y) is much smaller
than both the bias and the numerical standard error of L̂EIS(σ ; y).
LH(σ ; y) requires less than one fifth the time to compute.

The fact that the bias of log L̂EIS(σ ; y)depends onσ suggests that
numerical approximations of the maximum likelihood estimate
are also biased. For each of the R = 5000 trajectories, and with
ᾱ and φ set to their maximum likelihood values, I approximate
the restricted maximum likelihood estimate σ̂EIS using a cubic
spline interpolation of log L̂EIS(σ ; y) within the grid points. I use
the samplemean and standard deviation of R = 5000 independent
draws of σ̂EIS − σ̂ to estimate the bias and numerical standard error
of σ̂EIS . I obtain a bias of −4.64 × 10−4 and a numerical standard
error of 4.84 × 10−4. Both are fairly small compared with the
sampling variability of the full maximum likelihood estimator of
σ : for a similar sample, Liesenfeld and Richard (2006) report an
asymptotic standard error for the MLE of σ of 0.032.

4.3. Stock market index returns

I now illustrate the performance of the HESSIAN method for
posterior simulation using a data set with n = 8851 observations
of S&P 500daily log returns,without dividends, from July 3, 1962 to
August 26, 1997, inclusive. I obtained this data set at Yahoo finance,
and it corresponds to the data set used in Chib et al. (2002).

I use the following Student’s t SVmodel, described in Chib et al.
(2002), a variant of the model in (15):

y1|θ, α1 ∼ t(a, exp(α1), ν),

yt |θ, αt ∼ t(a + byt−1, exp(αt), ν),

where a and b are additional parameters. This model had the
highestmarginal likelihood of themodels compared in that paper. I
use the same expressions for theψt(αt) and their derivatives as for
the model in (15), tabulated in Appendix I, except that I evaluate
them at y1 − a and yt − a − byt−1 instead of y1 and yt .

I complete the model with a prior distribution on the
parameters ᾱ, φ, σ , ν, a and b. Using prior predictive analysis, I
constructed a prior distribution over the parameters that covers
reasonable values of nine functions of interest. These are the six
parameters themselves, the unconditional standard deviation of
αt , given by σ/


1 − φ2, and two functions discussed in Jacquier

et al. (1994), namely the square of the coefficient of variation of
volatility (CV2) and the half life of shocks to volatility (HL). The two
functions are defined as

CV2 .
=

V [exp(αt)|θ ]

E[exp(αt)|θ ]2
= exp


σ 2

1 − φ2


− 1,

HL .= − log 2/ logφ.
The result was the following multivariate Gaussian prior distri-
bution on the transformed parameter θ .

= (ᾱ, tanh−1 φ, log σ ,
log ν, a, b):

θ
.
=


ᾱ

tanh−1 φ
log σ
log ν
a
b



∼ N




−11.0
2.1

−1.8
2.5
0.0
0.0

 ,

4 0 0 0 0 0
0 0.1 −0.05 0 0 0
0 −0.05 0.125 0 0 0
0 0 0 0.25 0 0
0 0 0 0 4 × 10−6 0
0 0 0 0 0 0.04


 .

Table 2 gives prior sample quantiles of the nine functions of inter-
est, for a random sample of size 105. The marginal distributions for
CV2 and HL are quite diffuse compared with the range of values
obtained in the studies reviewed by Jacquier et al. (1994).

I now compare various methods for joint posterior simulation
of θ and α, for the Student’s t stochastic volatility model and the
S&P 500 data set.

I use the same approximation q(θ, α|y) = q(θ |y)q(α|θ, y) as
an importance density for IS and as a proposal density for MCMC.
The marginal proposal density q(θ |y) is the following perturbed
multivariate Student’s t density:

q(θ |y) .=
Γ ((ν + K)/2)
Γ (ν/2)

(νπ)−K/2
|Ω|

1/2

×


1 +

(θ − θ̄ )⊤Ω(θ − θ̄ )

ν

−(ν+K)/2

(1 + g(θ)), (16)

where K = 6, the length of θ , θ̄ maximises p(θ)LH(θ; y), Ω is the
Hessian of − log[p(θ)LH(θ; y)] at θ̄ and

g(θ)

.
= min


0.9,max


−0.9,

K
k=1

1
6
∂3 log[p(θ)LH(θ; y)]

∂θ3k
· θ3k


,

an odd function with range [−0.9, 0.9]. Recall the definition of
the approximate likelihood LH(θ; y) in (13). I simulate from q(θ |y)
using reflection sampling, described in Appendix H, together with
standard methods for drawing multivariate Student’s t variates.

I denote the use of q(θ, α|y) for IS as the H-IS method and its
use for MCMC as the H-MCMC method. I compare these methods
with that described in Chib et al. (2002) (denoted CNS-7) and a
variant (CNS-10) where the mixture approximation with seven
components is replaced by the onewith ten components described
in Omori et al. (2007). I use the same prior for all methods for
comparability. Note that this is not the same prior as used in Chib
et al. (2002). In all cases, I generated posterior samples of size 105.
I used the same realised draws from q(θ, α|y) for both H-IS and
H-MCMC.

Table 3 shows the numerical efficiency of the posterior sample
mean as an estimator of the posterior mean, for each of six
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Fig. 1. Left panel: mean (solid), quantiles 0.01 (dotted), 0.05 (dashed), 0.95 (dashed) and 0.99 (dotted) of log likelihood error for L̂EIS(σ ; y)withM = 30, and likelihood error
for LG(σ ; y) approximation (dot-dashed). Right panel: mean (solid) and same quantiles of likelihood error for L̂H (σ ; y) approximation withM = 30, and likelihood error for
LH (θ; y) approximation (dot-dashed).
Table 2
Prior quantiles.

ᾱ φ σ ν a b σ/

1 − φ2 CV2 HL

0.01 −15.65 0.8773 0.073 3.80 −0.00468 −0.468 0.424 0.097 5.29
0.05 −14.30 0.9185 0.093 5.35 −0.00329 −0.328 0.542 0.163 8.15
0.25 −12.35 0.9550 0.131 8.70 −0.00133 −0.135 0.760 0.343 15.04
0.5 −11.01 0.9704 0.165 12.18 0.00001 −0.001 0.963 0.603 23.08
0.75 −9.66 0.9806 0.210 17.12 0.00136 0.133 1.222 1.132 35.35
0.95 −7.71 0.9895 0.296 27.74 0.00328 0.328 1.721 3.466 65.43
0.99 −6.34 0.9931 0.378 39.04 0.00464 0.461 2.200 10.530 100.57
Table 3
Multiple comparison.

Mean Std NSE-B RNE-B NSE-TS RNE-TS

H-IS, ᾱ −10.07966 0.12337 4.28e−04 0.83
H-MCMC, ᾱ −10.07957 0.12305 4.83e−04 0.65 4.67e−04 0.70
CNS-7, ᾱ −10.08400 0.12155 5.88e−04 0.43 5.74e−04 0.45
CNS-10, ᾱ −10.07957 0.12288 5.37e−04 0.52 5.28e−04 0.54

H-IS, φ 0.99019 0.00192 6.68e−06 0.83
H-MCMC, φ 0.99019 0.00192 7.76e−06 0.61 8.20e−06 0.55
CNS-7, φ 0.98990 0.00197 1.35e−05 0.21 1.43e−05 0.19
CNS-10, φ 0.99017 0.00191 1.57e−05 0.15 1.47e−05 0.17

H-IS, σ 0.10794 0.00853 2.74e−05 0.97
H-MCMC, σ 0.10794 0.00854 2.89e−05 0.87 2.65e−05 1.04
CNS-7, σ 0.10981 0.00870 8.55e−05 0.10 9.10e−05 0.09
CNS-10, σ 0.10812 0.00842 1.03e−04 0.07 9.67e−05 0.08

H-IS, ν 12.79220 1.77886 5.85e−03 0.92
H-MCMC, ν 12.79172 1.78922 6.69e−03 0.72 6.03e−03 0.88
CNS-7, ν 12.60477 1.72429 2.24e−02 0.06 2.16e−02 0.06
CNS-10, ν 12.79387 1.77099 2.33e−02 0.06 2.51e−02 0.05

H-IS, a 0.00041 0.00007 2.08e−07 0.98
H-MCMC, a 0.00041 0.00007 2.46e−07 0.71 2.56e−07 0.65
CNS-7, a 0.00041 0.00007 2.67e−07 0.60 3.21e−07 0.41
CNS-10, a 0.00041 0.00007 2.86e−07 0.52 2.62e−07 0.62

H-IS, b 0.13806 0.01076 3.44e−05 0.98
H-MCMC, b 0.13807 0.01078 4.39e−05 0.60 5.07e−05 0.45
CNS-7, b 0.13800 0.01074 4.90e−05 0.48 4.16e−05 0.67
CNS-10, b 0.13812 0.01073 4.83e−05 0.49 4.95e−05 0.47
parameters and four methods. For the methods H-MCMC, CNS-
7 and CNS-10, I compute numerical standard errors and relative
numerical efficiency using two methods implemented in the R
package coda. The first is the batch mean method, for which I
chose a batch length of 500. This gives the numerical standard
error NSE and the relative numerical efficiency RNE. The second
is a time-series method which uses an estimate of the spectral
density at frequency zero. This gives NSE-TS and RNE-TS. For the
method H-IS, I compute the numerical standard error and relative
numerical efficiency defined in Geweke (1989) and tabulate them
in the columns NSE and RNE. Computational time was 2056 s for
H-IS and H-MCMC, 3013 s for CNS-7 and 3325 s for CNS-10.

For some parameters, the numerical efficiency of the CNS-7 and
CNS-10 sample means is greater than 50%. For these parameters,
the numerical efficiency of H-IS and H-MCMC is comparable to
that of CNS-7 and CNS-10. For the other parameters, the numerical
efficiency of CNS-7 and CNS-10 sample means is much lower, but
the efficiency of H-IS and H-MCMC sample means remains higher
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than 50%. The numerical efficiency of H-IS dominates all other
methods for all parameters, and H-IS takes about 1/3 less time as
CNS-7 and CNS-10.

For CNS-7 and CNS-10, the reported numerical standard errors
do not fully account for the error of the sample means. Standard
MCMC theory does not guarantee the simulation consistency of
the CNS-7 and CNS-10 sample means: Gibbs draws of ν and its
associated latent variables λt are based on their true conditional
distribution, but other variables are drawn from approximate
conditional distributions. There is strong evidence against the
simulation consistency of CNS-7 sample means: for σ and ν, the
bias is much larger than the numerical standard error. For CNS-
10, the approximate conditional distributions are closer to the true
ones and any bias there may be is very small—it does not clearly
dominate the numerical standard error. But we only know this
through external comparisonwith a simulation consistentmethod.

Numerical efficiency of the H-IS and H-MCMC sample means is
considerably higher than the efficiency reported for block sampling
methods in Shephard and Pitt (1997),Watanabe andOmori (2004),
Strickland et al. (2006), Jungbacker and Koopman (2008) and
Omori and Watanabe (2008). These papers analyse similar (some
simpler, some richer) stochastic volatility models. In all cases, data
sample sizes were considerably smaller.

We obtain log p̂( y) = 31, 092.96 and σ̂p/p̂( y) = 0.0011
for the Student’s t SV example. The addition computation takes a
negligible amount of time. Chib et al. (2002) approximatemarginal
likelihoods using a method involving supplementary simulation
and particle filtering. They do not report standard errors, but
results they report in Table 10 for different simulation sample sizes
suggest that numerical efficiency is several orders of magnitude
lower.

In a separate computational experiment, I alternated between
an MCMC block updating θ and α and a block updating α only,
to measure the relative contributions to numerical inefficiency
of q(α|θ, y) and q(θ |y). The acceptance probability for α alone,
averaged over the posterior distribution of θ , was 0.9985,
compared to 0.906 for a joint proposal of θ and α. This suggests
that the approximation q(θ |y) is the weak link for this empirical
example.

4.4. Transaction counts

The next example illustrates the use of the HESSIAN method
for dynamic count data. I use a data set with 4914 observations
of transaction counts for IBM stock. There are 78 observations for
each day, corresponding to 5 min intervals from 8:30 am to 4:30
pm. There are 63 trading days, from November 1, 1990 to January
31, 1991. Details are in Chapter 5 of Tsay (2002), and the raw data
are kindly provided by Ruey Tsay at the website for his book.

Dynamic count models have been successfully used in many
applications where count intensity varies over time. Harvey and
Durbin (1986) and Durbin and Koopman (1997) study counts of
motorist, passenger, cyclist and pedestrian casualties in Britain;
Frühwirth-Schnatter and Wagner (2006), counts of pedestrian
casualties in Linz. Harvey and Fernandes (1989) analyse time
series of counts of goals scored in soccer games, reported purse
snatchings in Chicago, and deaths of van drivers in Britain. Zeger
(1988) use data on numbers of reported incidents of polio in
the United States and Jung et al. (2006) consider counts of daily
admissions for asthma to a hospital in Sydney. Rydberg and
Shephard (2003) and Liesenfeld et al. (2006) look at the absolute
value of asset price changes as multiples of the tick size.

Most of these studies use a conditional Poisson distribution.
Some are parameter-driven, with the Poisson intensity depending
on a latent process. Others are observation-driven, with the
intensity given as a deterministic function of lagged observations.
A simple parameter-driven model, without covariates, is given by
the state dynamics in (14) and

yt |θ, αt ∼ Poisson(exp(αt)).

Just as the Student’s t SV model features overdispersion of
the conditional log return distribution relative to the Gaussian
SV model, the following Gamma–Poisson count model features
overdispersion of the conditional count distribution relative to the
Poisson count model:

yt |θ, αt ∼ Gamma Poisson(r, exp(αt)).

The Gamma–Poisson distribution is a Gamma mixture of Poisson
distributions: if we draw λ from a Gamma distribution with shape
r and scale β , then y from the Poisson distribution with mean λ,
the marginal distribution of y is Gamma Poisson(r, β). For integer
values of r , this is the negative binomial distributionwith r failures
and success probability β/(1 + β). Rydberg and Shephard (2003)
and Liesenfeld et al. (2006) use a negative binomial distribution to
capture conditional overdispersion in price change data.

Here, I use a more diffuse prior for the parameters. For the state
parameters ᾱ, φ and σ , I use the following prior. ᾱ

tanh−1 φ
log σ

 ∼ N

 0.0
1.5

−1.5


,

25.0 0 0
0 0.625 −0.25
0 −0.25 0.5


. (17)

For the Gamma–Poisson model, r is a priori independent of the
other parameters, with log r ∼ N(2.5, 1). Values and derivatives
of the ψt(αt) for both the Gamma and the Gamma–Poisson model
are tabulated in Appendix I.

Table 4 shows posterior results for the Poisson (Po) and
Gamma–Poisson (Ga–Po) models. Posterior simulation is by
independence Metropolis–Hastings, using a joint proposal for θ
and α based on the HESSIAN approximation and an approximation
q(θ |y) analogous to that in (16). Results are based on a posterior
sample size ofM = 25, 000. This takes 320 s for the Poissonmodel
and 295 s for the Gamma–Poisson model.

Numerical efficiency is quite high despite considerable non-
Gaussianity of the count data: the mean count is 12.18, and the
numbers of periods with 0, 1, and 2 transactions are 83, 84 and
119, respectively.

For the Poisson and Gamma–Poisson examples, I obtain
marginal likelihoods−15372.94 (0.0023) and−15279.15 (0.0033),
respectively. The Bayes factor decisively favours the more flexible
Gamma–Poisson model.

4.5. Transaction durations

The next example is a model of durations between financial
transactions, and illustrates the performance of the HESSIAN
method with a much larger sample, of high frequency financial
data. I use a data set with adjusted durations between trades, in
seconds, also for IBM stock, and during the same period as the
count data. There are 59,838 adjusted durations in the sample,
available at the same website. The adjustments, which remove
diurnal patterns, are described in Tsay (2002).

Dynamic models of durations between transactions are useful
for understandingmarketmicrostructure. Engle and Russell (1998)
introduce the autoregressive conditional duration model (ACD),
an observation-driven model for durations. Bauwens and Veredas
(2004) introduce the stochastic conditional duration model (SCD),
a similar, but parameter-driven model, and describe a quasi-
maximum likelihood method for estimation. Strickland et al.
(2006, 2008) also consider SCD models, using MCMC for Bayesian
inference. They update blocks of latent states that are smaller than
the entire sequence.



198 W.J. McCausland / Journal of Econometrics 168 (2012) 189–206
Table 4
Results for count and duration models.

q0.01 q0.05 q0.5 q0.95 q0.99 Mean Std NSE RNE

Po, ᾱ 2.227 2.248 2.299 2.348 2.369 2.2986 0.0303 0.00020 0.883
Po, φ 0.792 0.800 0.818 0.835 0.843 0.8179 0.0108 0.00007 0.828
Po, σ 0.358 0.363 0.375 0.388 0.393 0.3755 0.0075 0.00006 0.608

Ga–Po, ᾱ −0.367 −0.302 −0.158 −0.018 0.041 −0.1586 0.0869 0.00081 0.460
Ga–Po, φ 0.908 0.914 0.928 0.941 0.946 0.9279 0.0081 0.00006 0.636
Ga–Po, σ 0.196 0.202 0.219 0.237 0.245 0.2196 0.0106 0.00010 0.496
Ga–Po, r 10.377 10.821 12.115 13.747 14.572 12.1800 0.8952 0.00801 0.500

Exp, ᾱ 0.558 0.570 0.599 0.629 0.642 0.5992 0.0180 0.00010 0.693
Exp, φ 0.906 0.910 0.919 0.927 0.930 0.9187 0.0050 0.00003 0.566
Exp, σ 0.311 0.319 0.338 0.359 0.367 0.3382 0.0121 0.00007 0.549
I use a simple stochastic duration model, where state dynamics
are given by (14) and durations are conditionally exponentially
distributed:

yt |θ, αt ∼ Exponential(exp(αt)).

Table 4 shows posterior results for this (Exp) model, based on a
posterior independence Metropolis–Hastings sample of size M =

50, 000. Simulation takes 7437 s. Despite a very long sample,
numerical efficiency is quite high.

4.6. Other comparisons

I nowmake some indirect comparisons of the HESSIANmethod
with other methods for approximating values of the likelihood
function for state space models of the kind described in the
introduction.

It is typically trivial to approximate values of the likelihood
function using the computational bi-products of particle filtering.
See the examples in the survey by Doucet and Johansen (2010).
Numerical precision, however, ismuch lower. To seewhy, consider
an ideal case where we have a fully adapted auxiliary particle
filter, as described in Pitt and Shephard (1999). Even if we had
an iid particle sample {α

(m)
t }

M
m=1 from p(αt |y1, . . . , yt), then the

usual estimate p̂( yt+1|y1, . . . , yt)
.
= M−1M

m=1 p( yt+1|α
(m)
t ) of

the likelihood factor p( yt+1|y1, . . . , yt) is the sample mean of a
quantity that varies considerably in the population. This is for a
single factor of the likelihood function. In contrast, it is clear from
Fig. 1 that p(α, y|θ)/q(α|θ, y) has very small variance with respect
to q(α|θ, y). For this reason, one would require an extremely large
number of particles to achieve the same numerical precision as
L̂H(θ) for the full likelihood.

Durbin and Koopman (1997) do importance sampling using a
multivariate Gaussian approximation. Their model is a stochastic
Poisson count model of road accident deaths, and their data
consist of 192 observations. Their most numerically efficient
approximations of values of the likelihood function are for the case
where they use antithetic variables for both location and scale and
a control variable. They achieve a numerical variance of 4.61×10−5

using M = 50 trajectories. In the example above, there are M =

30 trajectories and n = 2613 observations, and all numerical
variances are less than 2.0 × 10−7. This is without using variation
reduction techniques to improve the numerical efficiency of the
HESSIAN method.

5. Conclusions

I have constructed an approximation q(α|θ, y) to the target
density p(α|θ, y) and shown that it can be used as an importance
density for IS or as a proposal density for an independence
Metropolis–Hastings update of the target distribution.

I have shown how to evaluate and sample q(α|θ, y) exactly,
and have tested the correctness of my implementation. This
means we can appeal to standard results characterising IS and
MCMC numerical errors. The same is not true for some competing
methods. The EIS estimator for values of the likelihood function
can be biased, and since this bias can depend on parameter values,
numerical approximations of maximum likelihood estimates can
also be biased. Auxiliary mixture sampling methods that do
not compensate for approximation error do not necessarily give
simulation consistent sample means: i have given evidence that
the simulator in Chib et al. (2002) generates posterior samples
whosemeans are not simulation consistent. Errors associatedwith
approximate IS or MCMC are often small, but we only know
this by comparing results with those obtained using exact IS or
MCMC—ultimately, measurement of numerical error is limited by
the precision of the exact method.

The HESSIAN method is highly numerically efficient for
the examples in Section 4. These feature a variety of models
and large data sets. Efficiency relies on q(α|θ, y) being an
extremely close approximation of p(α|θ, y) even for large n, and
p(α|θ, y)/q(α|θ, y) being bounded.

Further advantages of the HESSIAN approximation are realised
by combining it with an approximation q(θ |y) of p(θ |y) such
that p(θ |y)/q(θ |y) is bounded. The result is an approximation
q(θ, α|y) = q(θ |y)q(α|θ, y) of the full posterior density p(θ, α|y)
such that p(θ, α|y)/q(θ, α|y) is bounded. When q(θ, α|y) is
used for IS to compute integrals with respect to p(θ, α|y), the
variance of the importance sample weights is finite. When it is
used as a proposal density for independence Metropolis–Hastings
simulation of p(α|θ, y), the chain is geometrically ergodic.

Drawing (θ, α) as a single block, with no data augmentation,
has many important advantages. As with drawing α as a
block, it solves the problem of high posterior correlation within
α. In addition, it also avoids inefficiencies due to posterior
dependence between α and θ . In the examples in this paper it
is highly numerically efficient and no burn-in draws need to be
removed.

It also enables IS for the full posterior distribution, which has
some advantages over MCMC. In the stock market index example,
IS is more efficient than MCMC for all six parameters. One can
approximate themarginal likelihood p( y) as themean of a random
sample with low variance—this is trivial to implement, takes
negligible time to compute, and gives much higher numerical
precision than particle filtering methods. Importance draws do
not need to be independent, which facilitates variance reduction
techniques such as antithetic sampling and randomised quasi-
Monte Carlo.

The HESSIAN method is reasonably fast, requiring O(n)
operations for evaluating q(α|θ, y) and drawing from it. No
simulation is required. It takes about 1/3 less time to generate a
posterior sample than the method of Chib et al. (2002), for the S&P
example. Simulation smoothing is computationally intensive, and
for long data sets, the amount of time it takes to generate a sample
whose numerical standard error is a small fraction of the posterior
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standard deviation is far from negligible. Such improvements in
computational efficiency are valuable.

Since the construction of q(α|θ, y) does not require special
distributional assumptions on observations, data augmentation is
easily avoided: in the Student’s t SVmodel, it is not necessary to use
data augmentation to make log returns conditionally Gaussian.

Comparedwith q(α|θ, y), the approximation q(θ |y) used in this
paper seems relatively crude: in the S&P 500 SV example, the
acceptance probability for an update of α alone was 0.9985 and for
a joint update of θ and α, 0.906. For this model and data, the q(θ |y)
approximation seems to be the weak link. This observation, as
well as the very high efficiency obtained in the stochastic duration
example suggest that applying the HESSIAN method to very large
high frequency financial data sets is promising.

Computing the q(α|θ, y) for a new model requires code
to evaluate the first five derivatives of log p( yt |θ, αt). This is
not trivial, but one can use numerical derivatives or other
approximations: the approximation q(α|θ, y) may be worse
as a result, but one can still evaluate and sample it exactly.
Furthermore, we do not actually need analytic expressions for the
derivatives to compute exact values at a point. If the expression
for log p( yt |θ, αt) involves products or compositions of primitive
functions, we can evaluate analytic derivatives of the primitive
functions and then use general purpose routines to combine
them according to Leibniz’ rule or Faà di Bruno’s rule to give the
derivatives of log p( yt |θ, αt).

The perturbed Gaussian distribution has some secondary
parameters controlling tail thickness, and one needs to choose
their values. However, all empirical examples in Section 4 used
the same recommended values in Appendix G. Furthermore,
experimentation not reported suggests that results are not
sensitive to their values within a large region.

There are important limitations to the HESSIAN method, and
some of these are the impetus for ongoing work. I now require
the state αt to be univariate, but the HESSIAN method might
be extended to models with multivariate states in two different
ways. The first and simplest way would be to sample multivariate
states as a single block in the temporal dimension but one-at-a-
time in the cross section dimension. The HESSIAN approximation
is computed for each target conditional distribution in turn. A
true multivariate extension of the HESSIAN method, giving a close
enough approximation of the full target distribution to allow a
single draw of multivariate states, would be more difficult. One
key result, however, generalises easily to multivariate states: the
derivation in Appendix C of Eq. (3) for h′

t(αt , αt+1) does not require
univariate states.

Another limitation is that the conditional distribution of the ob-
served vector yt given α can only depend on the contemporaneous
state αt . This rules out any conditional dependence between the
state innovation at time t and the observed vector at t . SV models
with the asymmetric volatility effect often known as the leverage
effect feature this conditional dependence and are more realistic
than those without. Another limitation is that αmust be Gaussian.
I am currently working with a coauthor to extend the HESSIAN
method tomodelswith conditional dependence and states that are
non-Gaussian but still Markov.
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Appendix A. Computing Ω̄ and c̄

Themarginal distribution of states is multivariate Gaussian.We
can write α ∼ N(Ω̄−1c̄, Ω̄−1), where Ω̄ is the prior precision of α
and c̄ is the prior covector.We can compute Ω̄ and c̄ bywriting out
the log density

log p(α) = log p(α1)+

n
t=2

log p(αt |αt−1)

using (1), writing the same density in terms of Ω̄ and c̄ ,

log p(α)

=
1
2


log |Ω̄| − n log 2π − α⊤Ω̄α + 2c̄⊤α − c̄⊤Ω̄−1c̄


, (18)

and then matching linear and quadratic terms. We obtain, for t =

1, . . . , n − 1,

Ω̄tt = σ−2
t−1 + σ−2

t φ2
t , Ω̄t,t+1 = Ω̄t+1,t = −σ−2

t φt ,

c̄t = σ−2
t−1dt−1 − σ−2

t φtdt ,
(19)

and

Ω̄nn = σ−2
n−1, c̄n = σ−2

n−1dn−1, (20)

with all other elements equal to zero.
Eq. (14) in Section 4 describes a stationary special case with

parameters ᾱ, φ and σ . Here, σ0 = σ/
√
1 − σ 2, d0 = ᾱ, and for

t > 0, σt = σ , dt = (1 − φ)ᾱ and φt = φ. Thus

Ω̄11 = Ω̄nn = σ−2, Ω̄tt = σ−2(1 + φ2),

t = 2, . . . , n − 1,
Ω̄t,t+1 = −σ−2φ, t = 1, . . . , n − 1,

c̄1 = c̄n = σ−2(1 − φ)ᾱ, c̄t = σ−2(1 − φ)2ᾱ,

t = 2, . . . , n − 1.

Appendix B. Computing the mode of the target distribution

In this appendix we show how to compute a, the conditional
mode of α given θ and y. Bi-products of the computation include
¯̄Ω and ¯̄c , the precision and covector of the multivariate Gaussian
distribution whose mode is a and whose log density has the same
Hessian (with respect to α) as log p(α|y) at a. Another bi-product
is the sequence of conditional variances Σ1, . . . ,Σn defined in
Section 2.2.

Previous authors have used the Kalman filter (Durbin and Koop-
man, 1997) or Extended Kalman filter (Fahrmeir, 1992) to compute
the conditionalmode a. As inDurbin andKoopman (1997), I use the
Newton–Raphson method. However, the implementation of each
step is quite different, as mine is not based on the Kalman filter.

One can write log p(α|y) = log p(α)+ log p( y|α)+ k,where k
does not depend on α. We now define, for all ã ∈ Rn,

¯̄Ω(ã) .= Ω̄ + diag(−ψ ′′

1 (ã1), . . . ,−ψ
′′

n (ãn)), (21)
¯̄c(ã) .= c̄ + (ψ ′

1(ã1)− ψ ′′

1 (ã1)ã1, . . . , ψ
′

n(ãn)− ψ ′′

n (ãn)ãn).

Thus ¯̄Ω =
¯̄Ω(a) and ¯̄c = ¯̄c(a). It is straightforward to check that

the multivariate Gaussian log density with the same gradient and
Hessian as log p(α|y) at ã is given by

1
2
log |

¯̄Ω(ã)| −
n
2
log 2π

−
1
2


α⊤ ¯̄Ω(ã)α − 2 ¯̄c(ã)⊤α + ¯̄c[ ¯̄Ω(ã)]−1 ¯̄c


.

The precision and co-vector of this distribution are ¯̄Ω(ã) and ¯̄c(ã),
so themean isµ(ã) .= [

¯̄Ω(ã)]−1 ¯̄c(ã), which can be computed using
the following procedure, based on an algorithm by Vandebril et al.
(2007) for solving the symmetric band diagonal system Ωµ = c .
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The forward pass is
Σ1 = Ω−1

11 , m1 = Σ1c1,

Σt = (Ωtt −Ω2
t,t−1Σt−1)

−1, mt = Σt(ct −Ωt,t−1mt−1),

and the backwards pass is
µn = mn, µt = mt −Ωt,t+1Σtµt+1.

To compute the mode a, I use a Newton–Raphson method. The
initial value of a is the value computed for the previous value of
θ , if it is available, otherwise the prior mean. The computation
ã′

= [
¯̄Ω(ã)]−1 ¯̄c(ã) described above is repeated until numerical

convergence. The final values of ¯̄Ω(ã), ¯̄c(ã) and Σ1, . . . ,Σn

correspond to ¯̄Ω , ¯̄c andΣ1, . . . ,Σn, defined in Section 2.2.
I make two modifications of this algorithm to reduce the

number of iterations required to find themode and to handle cases
of non-convergence. First, I add an approximation of ät(ã′

t+1 −

ãt+1)
2/2 to the value of ã′

t to take advantage of third derivative
information. Second, in rare cases of non-convergence I restart,
beginning with a sequence of line search steps.

Appendix C. Exact derivatives of log p(αt |αt+1, y)

In this appendix, I derive an exact expression for all derivatives
of log p(αt |αt+1, y)with respect to αt , in terms ofµt−1|t(αt) and its
derivatives.

We first write, for t = 2, . . . , n − 1,

p(αt |αt+1, y) =


p(α1, . . . , αt |αt+1, y)

t−1
τ=1

dατ

∝


p(α1, . . . , αt+1, y)

t−1
τ=1

dατ

∝


p(α1, . . . , αt−1, y1, . . . , yt−1)

× p(αt |αt−1)p(αt+1|αt)p( yt |αt)

t−1
τ=1

dατ

= c(αt)p(αt+1|αt)p( yt |αt),

where the integration factor c(αt) is given by

c(αt)
.
=


p(α1, . . . , αt−1, y1, . . . , yt−1)p(αt |αt−1)

t−1
τ=1

dατ .

Taking the logarithm yields
log p(αt |αt+1, y) = log c(αt)+ log p(αt+1|αt)+ ψt(αt)+ k, (22)
where k is the logarithm of the unknown normalisation constant.
Differentiating (22) with respect to αt gives
∂ log p(αt |αt+1, y)

∂αt
=

1
c(αt)

∂c(αt)

∂αt
+
∂ log p(αt+1|αt)

∂αt

+ψ ′

t (αt). (23)
We now proceed to write the first term of (23) in a convenient

form. Taking the derivative of c(αt)with respect to αt , we obtain
∂c(αt)

∂αt
=


p(α1, . . . , αt−1, y1, . . . , yt−1)

×
∂p(αt |αt−1)

∂αt

t−1
τ=1

dατ

=


p(α1, . . . , αt−1, y1, . . . , yt−1)p(αt |αt−1)

×
∂ log p(αt |αt−1)

∂αt

t−1
τ=1

dατ .
Dividing both sides by c(αt) yields

1
c(αt)

∂c(αt)

∂αt

=


p(α1, . . . , αt−1, y1, . . . , yt−1)p(αt |αt−1)

∂ log p(αt |αt−1)
∂αt

t−1
τ=1

dατ


p(α1, . . . , αt−1, y1, . . . , yt−1)p(αt |αt−1)

t−1
τ=1

dατ

.

This is the integral of the function ∂ log p(αt |αt−1)/∂αt with
respect to the normalised density p(α1, . . . , αt−1|αt , y1, . . . , yt−1).
We can therefore write

1
c(αt)

∂c(αt)

∂αt
= E


∂ log p(αt |αt−1)

∂αt

αt , y

.

Insert this expression into (23) to obtain

∂ log p(αt |αt+1, y)
∂αt

= E

∂ log p(αt |αt−1)

∂αt

αt , y


+
∂ log p(αt+1|αt)

∂αt
+ ψ ′

t (αt)

= E

∂ log p(αt |αt−1)

∂αt

+
∂ log p(αt+1|αt)

∂αt

αt , αt+1, y


+ ψ ′

t (αt)

= E

∂ log p(αt |αt−1, αt+1)

∂αt

αt , αt+1, y


+ψ ′

t (αt).

Since

∂ log p(αt |αt−1, αt+1)

∂αt
= −Ω̄t−1,tαt−1 − Ω̄ttαt

− Ω̄t,t+1αt+1 + c̄t ,

h′

t(αt;αt+1)
.
=

∂ log p(αt |αt+1, y)
∂αt

= −Ω̄t−1,tµt−1|t(αt)− Ω̄ttαt

− Ω̄t,t+1αt+1 + c̄t + ψ ′

t (αt).

(24)

We now have an exact expression for the first derivative of
log p(αt |αt+1, y) with respect to αt , in terms of µt−1|t(αt). Similar
derivations give results for t = 1 and t = n:

h′

1(α1;α2) =
∂ log p(α1|α2, y)

∂α1
= − Ω̄11α1 − Ω̄12α2 + c̄1 + ψ ′

1(α1), (25)

h′

n(αn) =
∂ log p(αn|y)

∂αn
= − Ω̄n−1,nµn−1|n(αn)− Ω̄nnαn + c̄n + ψ ′

n(αn).

(26)

Higher order derivatives are given by

h′′

t (αt) =


−Ω̄11 + ψ ′′

1 (α1), t = 1,
−Ω̄t−1,tµ

′

t−1|t(αt)− Ω̄tt + ψ ′′

t (αt), t = 2, . . . , n.
(27)

h( j)t (αt) =


ψ
( j)
1 (α1), t = 1,

−Ω̄t−1,tµ
( j−1)
t−1|t (αt)+ ψ

( j)
t (αt), t = 2, . . . , n,

j = 3, 4, . . . . (28)
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Appendix D. Derivatives of at|t+1(αt+1) and st|t+1(αt+1) at
αt+1 = at+1

In this appendix I derive, for t = 1, . . . , n − 1, the first four
derivatives of at|t+1(αt+1) and the first three derivatives of
st|t+1(αt+1)

.
= logΣt|t+1(αt+1) at the point αt+1 = at+1. It should

be clear how to compute higher order derivatives if these are
desired.

I compute ȧt , ät ,
...
a t ,

....
a t , ṡt , s̈t and

...
s t exactly using linear first

order difference equations, where the forcing term at t depends
on the derivatives of ψt(αt) at at . The difference equations are
based on derivatives of an equation giving a first order necessary
condition for (a1|t+1, . . . , at|t+1) to be the conditional mode of
(α1, . . . , αt) given (αt+1, . . . , αn) and y.
Derivatives ȧt , ät ,

...
a t and

....
a t . For t = 1, . . . , n − 1, the log condi-

tional density of (α1, . . . , αt) given (αt+1, . . . , αn) and y is

log p(α1, . . . , αt |αt+1, y) = −
1
2
α⊤Ω̄α + c̄⊤α +

t
τ=1

ψτ (ατ )+ k,

where k does not depend on (α1, . . . , αt). A first order necessary
condition for (a1|t+1(αt+1), . . . , at|t+1(αt+1)) to be the conditional
mode is that the derivative of this log density with respect to αt be
equal to zero there. For t = 1, we have the condition

− Ω̄11a1|2(α2)− Ω̄12α2 + c̄1 + ψ ′

1(a1|2(α2)) = 0, (29)

and for t = 2, . . . , n − 1, we have

− Ω̄t−1,tat−1|t+1(αt+1)− Ω̄ttat|t+1(αt+1)− Ω̄t,t+1αt+1

+ c̄t + ψ ′

t (at|t+1(αt+1)) = 0. (30)

Eqs. (29) and (30) feature the function at|t+1(αt+1) whose deriva-
tives we are trying to evaluate at at+1. Our strategy will be to take
multiple derivatives of these two equations, set αt+1 to at+1, and
rearrange to obtain linear first order difference equations giving ȧt
through

....
a t and ṡt through

...
s t in terms of ȧt−1 through

....
a t−1.

I will first establish the identity

at−1|t+1(αt+1) ≡ at−1|t(at|t+1(αt+1)), (31)

which is useful because it expresses a term in Eq. (30) as the
composition of two functions whose derivatives we are trying to
evaluate. This link between time periods t and t − 1 turns out to
be particularly useful for generating difference equations.

By definition, (a1|t+1(αt+1), . . . , at|t+1(αt+1)) is the mode of
(α1, . . . , αt) given αt+1 and y. This implies that (a1|t+1(αt+1),
. . . , at−1|t+1(αt+1)) is the mode of (α1, . . . , αt−1) given αt =

at|t+1(αt+1) and y. The identity in (31) follows.
I now introduce some notation to make the ensuing derivation

more concise and to avoid having to treat t = 1 as a special case.
Define

Ψt(αt) =


ψ ′

t (αt) t = 1,
ψ ′

t (αt)− Ω̄t,t−1at−1|t(αt) t = 2, . . . , n.

We can now write the first order conditions in Eqs. (29) and (30),
for all t = 1, . . . , n, as

Ψt(at|t+1(αt+1))+ c̄t = Ω̄t,t+1αt+1 + Ω̄ttat|t+1(αt+1). (32)

The first derivative of these first order conditions with respect
to αt+1 gives

dΨt(at|t+1(αt+1))

dαt+1
= Ω̄t,t+1 + Ω̄tta′

t|t+1(αt+1). (33)

Higher order derivatives are

djΨt(at|t+1(αt+1))

dαj
t+1

= Ω̄tta
( j)
t|t+1(αt+1), j = 2, 3, . . . . (34)
I now have the derivatives I wish to evaluate at αt+1 on the right
hand sides of Eqs. (33) and (34). The left hand sides consist of
derivatives of Ψt(at|t+1(αt+1))with respect to αt+1. I now proceed
to compute the first four and evaluate them at αt+1.

The first derivative of Ψt(at|t+1(αt+1)) is

dΨt(at|t+1(αt+1))

dαt+1
= Ψ ′

t (at|t+1(αt+1))a′

t|t+1(αt+1). (35)

Evaluating (35) at αt+1 = at+1, I obtain

dΨt(at|t+1(at+1))

dαt+1
= Ψ ′

t (at)ȧt . (36)

I do the same for the second through fourth derivatives, using Faà
di Bruno’s formula for derivatives of composite functions to avoid
error and tedium. This gives

d2Ψt(at|t+1(at+1))

dα2
t+1

= Ψ ′′

t (at)ȧ
2
t + Ψ ′

t (at)ät , (37)

d3Ψt(at|t+1(at+1))

dα3
t+1

= Ψ ′′′

t (at)ȧ
3
t + 3Ψ ′′

t (at)ȧt ät + Ψ ′

t (at)
...
a t , (38)

d4Ψt(at|t+1(at+1))

dα4
t+1

= Ψ
(4)
t (at)ȧ4t + 6Ψ ′′′

t (at)ät ȧ
2
t

+Ψ ′′

t (at)(3ä
2
t + 4

...
a t ȧt)+ Ψ ′

t (at)
....
a t . (39)

I am now ready to give the ȧt in terms of theΣt , which are by-
products of the computation of a. I now show by induction that for
all t = 1, . . . , n − 1,

a′

t|t+1(αt+1) = −
¯̄Ω t,t+1Σt|t+1(αt+1), (40)

from which follows

ȧt = −
¯̄Ω t,t+1Σt . (41)

Using (33) and (35) to eliminate the two left hand sides of these
equations, and noting that ¯̄Ω t,t+1 = Ω̄t,t+1 we can write
Ω̄tt − Ψ ′

t (at|t+1(αt+1))

a′

t|t+1(αt+1) = −Ω̄t,t+1. (42)

For t = 1, the left hand side of (42) is
Ω̄11 − ψ ′′

1 (a1|2(α2))

a′

1|2(α2) =
¯̄Ω11(α2)a′

1|2(α2)

= Σ−1
1|2a

′

1|2(α2).

I use (8) and (21) to obtain the first and second equalities. This
establishes the result in (40) for t = 1.

I now assume that a′

t−1|t(αt) = −
¯̄Ω t−1,tΣt−1|t(αt) and show

that a′

t|t+1(αt+1) = −
¯̄Ω t,t+1Σt|t+1(αt+1) follows.We canwrite the

left hand side of (42) as
Ω̄tt − ψ ′′

t (at|t+1(αt+1))+ Ω̄t,t−1a′

t−1|t(at|t+1(αt+1))

a′

t|t+1(αt+1)

=


¯̄Ω tt − Ω̄2

t,t−1Σt−1|t(at|t+1(αt+1))

a′

t|t+1(αt+1)

=


¯̄Ω tt − Ω̄2

t,t−1Σt−1|t+1(αt+1)

a′

t|t+1(αt+1)

= Σ−1
t|t+1a

′

t|t+1(αt+1).

I use (21) and a′

t−1|t(αt) = −
¯̄Ω t−1,tΣt−1|t(αt) to obtain the first

equation and (8) to obtain the third. By induction, this establishes
the result for all t .

I pause to note a simple corollary of (40) which will be useful
later. Together, (40) and (42) give

Ω̄tt − Ψ ′

t (at|t+1(αt+1)) = Σ−1
t|t+1(αt+1). (43)
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We are now ready to compute ät ,
...
a t and

....
a t . Take (34), with

j = 2 and αt+1 = at+1, and (37) to write

(Ω̄tt − Ψ ′

t (at))ät = Ψ ′′

t (at)ȧ
2
t .

Eq. (43), with αt+1 = at+1 gives Ω̄tt − Ψ ′
t (at) = Σ−1

t , which we
combine with the previous result to give

ät = ΣtΨ
′′

t (at)ȧ
2
t . (44)

In a similar way, but using j = 3, 4 in (34), we obtain:
...
a t = Σt [Ψ

′′′

t (at)ȧ
3
t + 3Ψ ′′

t (at)ȧt ät ],
....
a t = Σt [Ψ

(4)
t (at)ȧ4t + 6Ψ ′′′

t (at)ät ȧ
2
t

+Ψ ′′

t (at)(3ä
2
t + 4

...
a t ȧt)].

Simplifying the last two equations yields

...
a t =


ΣtΨ

′′′

t (at)

+ 3


ΣtΨ

′′

t (at)
2 ȧ3t , (45)

....
a t =


ΣtΨ

(4)
t (at)


+ 10


ΣtΨ

′′

t (at)
 
ΣtΨ

′′′

t (at)


+ 15

ΣtΨ

′′

t (at)
3 ȧ4t . (46)

The square brackets suggest how to compute these expressions
efficiently.
Derivatives ṡt , s̈t and

...
s t . Differentiating both sides of (40) with

respect to αt+1 and using the definition st|t+1(αt+1)
.
= logΣt|t+1

(αt+1) gives

a′′

t|t+1(αt+1) = −Ω̄t,t+1Σ
′

t|t+1(αt+1)

= −Ω̄t,t+1Σt|t+1(αt+1)s′t|t+1(αt+1)

= a′

t|t+1(αt+1)s′t|t+1(αt+1). (47)

Evaluating the extreme left- and right-hand sides of (47) at αt+1 =

at+1 yields

ät = ȧt ṡt .

Using Leibniz’ rule for the derivatives of a product to differentiate
(47) two times with respect to αt+1 and then setting αt+1 = at+1
yields
...
a t = ät ṡt + ȧt s̈t ,

....
a t =

...
a t ṡt + 2ät s̈t + ȧt

...
s t .

Solving for ṡt , s̈t and
...
s t then simplifying gives

ṡt =

ΣtΨ

′′

t (at)

ȧt , (48)

s̈t =


ΣtΨ

′′′

t (at)

+ 2


ΣtΨ

′′

t (at)
2 ȧ2t , (49)

...
s t =


ΣtΨ

(4)
t (at)


+ 7


ΣtΨ

′′

t (at)
 
ΣtΨ

′′′

t (at)


+ 8

ΣtΨ

′′

t (at)
3 ȧ3t . (50)

Appendix E. Approximate value and derivatives of bt|t+1(αt+1)
at αt+1 = at+1

In this appendix, I derive an approximation of the value and
first three derivatives of bt|t+1(αt+1) at αt+1 = at+1. To simplify
notation I will usually suppress the arguments of at|t+1(αt+1) and
bt|t+1(αt+1) to write at|t+1 and bt|t+1.

The case t = 1 is trivial since a1|2(α2) and b1|2(α2) are the same
function by definition. I now consider the case 2 ≤ t ≤ n − 1,
leaving the case t = n for last. I evaluate h′

t(αt;αt+1), given by
(24), at αt = at|t+1(αt+1) to obtain

h′

t(at|t+1;αt+1) = −Ω̄t−1,tµt−1|t(at|t+1)− Ω̄ttat|t+1

− Ω̄t,t+1αt+1 + c̄t + ψ ′

t (at|t+1). (51)
Subtracting the first order necessary condition for at|t+1(αt+1) in
Eq. (30) from Eq. (51) yields

h′

t(at|t+1;αt+1) = −Ω̄t−1,t

µt−1|t(at|t+1)− at−1|t(at|t+1)


.

Evaluating h′′
t (αt), given by (27), at αt = at|t+1 gives

h′′

t (at|t+1) = −Ω̄t−1,tµ
′

t−1|t(at|t+1)− Ω̄tt + ψ ′′

t (at|t+1)

= −(Σt|t+1)
−1

− Ω̄t−1,t [µ
′

t−1|t(at|t+1)− a′

t−1|t(at|t+1)],

where I use (43) to obtain the second equality.
I now approximate bt|t+1(αt+1) − at|t+1(αt+1) using a linear

approximation of h′
t(αt;αt+1) around αt+1 = at|t+1(αt+1):

bt|t+1 − at|t+1

≈ −
h′
t(at|t+1;αt+1)

h′′
t (at|t+1)

=
−Ω̄t−1,t


µt−1|t(at|t+1)− at−1|t(at|t+1)


exp(−st|t+1)+ Ω̄t−1,t [µ

′

t−1|t(at|t+1)− a′

t−1|t(at|t+1)]
.

The right hand side of this approximation features the unknown
function µt−1|t . Replacing µt−1|t with its polynomial approxima-
tion Mt−1|t gives the approximation

R(αt+1)
.
= N(αt+1)/D(αt+1) = N(αt+1)V (αt+1),

with approximations of the numerator, denominator and recipro-
cal of the denominator given by

N(αt+1)
.
= −Ω̄t−1,t


Mt−1|t(at|t+1(αt+1))− at−1|t(at|t+1(αt+1))


,

D(αt+1)
.
= exp(−st|t+1(αt+1))+ Ω̄t−1,t

×

M ′

t−1|t(at|t+1(αt+1))− a′

t−1|t(at|t+1(αt+1))

,

V (αt+1)
.
=

1
D(αt+1)

.

Now let N .
= N(at+1), Ṅ

.
= N ′(at+1), N̈ = N ′′(at+1), and

...
N

.
=

N ′′′(at+1), and similarly for D(αt+1), V (αt+1) and R(αt+1).
I now approximate the value and three derivatives of bt|t+1

(αt+1) at αt+1 by the corresponding value and derivatives of
at|t+1(αt+1)+R(αt+1). I use Leibniz’ rule to compute the derivatives
of R(αt+1) at at+1 in terms of the derivatives of N(αt+1) and
V (αt+1) at αt+1. This gives

bt ≈ Bt
.
= at + R = at + NV , (52)

ḃt ≈ Ḃt
.
= ȧt + Ṙ = ȧt + ṄV + NV̇ , (53)

b̈t ≈ B̈t
.
= ät + R̈ = ät + N̈V + 2ṄV̇ + NV̈ , (54)

...
b t ≈

...
Bt
.
=

...
a t +

...
R =

...
a t +

...
NV + 3N̈V̇ + 3ṄV̈ + N

...
V . (55)

The quotient rule gives the following derivatives ofV (αt+1) at at+1:

V̇ =
−Ḋ
D2
, V̈ =

−D̈
D2

+ 2
(Ḋ)2

D3
,

...
V =

−
...
D

D2
+ 6

ḊD̈
D3

− 6
(Ḋ)3

D4
.

Evaluating N(αt+1) and its derivatives at at+1 using Faà di Bruno’s
rule gives

N = −Ω̄t−1,t(Mt−1 − at−1),

Ṅ = −Ω̄t−1,t(Ṁt−1 − ȧt−1)ȧt ,

N̈ = −Ω̄t−1,t [(Ṁt−1 − ȧt−1)ät + (M̈t−1 − ät−1)ȧ2t ],...
N = −Ω̄t−1,t [(Ṁt−1 − ȧt−1)

...
a t + 3(M̈t−1 − ät−1)ȧt ät

+ (
...
M t−1 −

...
a t−1)ȧ3t ],
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and doing the same for D(αt+1) gives

D = Σt + Ω̄t−1,t(Ṁt−1 − ȧt−1),

Ḋ = −ṡtΣt + Ω̄t−1,t(M̈t−1 − ät−1)ȧt ,

D̈ = (ṡ2t − s̈t)Σt + Ω̄t−1,t [(M̈t−1 − ät−1)ät
+ (

...
M t−1 −

...
a t−1)ȧ2t ],

...
D = (−ṡ3t + 3ṡt s̈t −

...
s t)Σt + Ω̄t−1,t [(M̈t−1 − ät−1)

...
a t

+ 3(
...
M t−1 −

...
a t−1)ȧt ät + (

....
M t−1 −

....
a t−1)ȧ3t ].

We are now ready to compute approximations Bt , Ḃt , B̈t and
...
Bt for

bt , ḃt , b̈t and
...
b t . We first compute N through

...
N and D through

...
D,

then V through
...
V , then Bt through

...
Bt using (52)–(55).

The approximation of bt|t+1(αt+1)−at|t+1(αt+1) above is a third
order polynomial. A higher order approximation is not worth the
computational cost and I set
....
B t =

....
a t . (56)

I now need to take care of the case t = n. Let bn be the mode
of the conditional distribution of αn given y. This is a number, not
a function, and we only need to approximate its value. A similar
argument gives

bn − an ≈
−Ω̄n−1,n(µn−1 − an−1)

Σn + Ω̄n−1,n(µ̇n−1 − ȧn−1)
.

Analogously, I define

Bn
.
= an +

−Ω̄n−1,n(Mn−1 − an−1)

Σn + Ω̄n−1,n(Ṁn−1 − ȧn−1)
. (57)

Appendix F. Approximate value and derivatives of µt(αt+1) at
αt+1 = at+1

In this appendix, I derive an approximation of the value and first
two derivatives of µt|t+1(αt+1)

.
= E[αt |αt+1, y] at αt+1 = at+1. To

simply notation, I suppress the argument of bt|t+1(αt+1) to write
bt|t+1.

The third order Taylor series expansion of log p(αt |αt+1, y)
around bt|t+1 gives

log p(αt |αt+1, y) ≈ k +
1
2
h′′

t (bt|t+1)(αt − bt|t+1)
2

+
1
6
h′′′

t (bt|t+1)(αt − bt|t+1)
3,

since h′
t(bt|t+1;αt+1) = 0 by the definition of bt|t+1. This leads to

the approximation

p(αt |αt+1, y) ≈ pG(αt; bt|t+1,−1/h′′

t (bt|t+1))

× exp

1
6
h′′′

t (bt|t+1)(αt − bt|t+1)
3


≈ pG(αt; bt|t+1,−1/h′′

t (bt|t+1))

×


1 +

1
6
h′′′

t (bt|t+1)(αt − bt|t+1)
3

,

where pG(·;µ, σ 2) denotes the density of a Gaussian random
variable with mean µ and variance σ 2. The second approximation
is not a proper density, since it becomes negative, but it does
integrate to one because of the odd symmetry of (αt − bt|t+1)

3

around bt|t+1.
This leads in turn to the approximation of µt|t+1 − bt|t+1 as the

integral of (αt − bt|t+1)with respect to this ‘density’. Thus
µt|t+1 − bt|t+1 ≈


pG(αt; bt|t+1,−1/h′′

t (bt|t+1))

×


1 +

1
6
h′′′

t (bt|t+1)(αt − bt|t+1)
3


× (αt − bt|t+1) dαt

=
1
6
h′′′

t (bt|t+1)


pG(αt; bt|t+1,−1/h′′

t (bt|t+1))

× (αt − bt|t+1)
4 dαt

=
1
6
h′′′

t (bt|t+1) ·
3

[−h′′
t (bt|t+1)]2

=
1
2

h′′′
t (bt|t+1)

[−h′′
t (bt|t+1)]2

.

In the final line, I use the fact that the kurtosis of a Gaussian random
variable is equal to 3.

I will now find an equivalent expression for this approximation
in terms of bt|t+1 and its derivatives. A first order necessary
condition for bt|t+1 to be the conditional mode of αt given αt+1 and
y is h′

t(bt|t+1;αt+1) = 0. Evaluating (24) at bt|t+1 gives

h′

t(bt|t+1;αt+1) = −Ω̄t−1,tµt−1|t(bt|t+1)− Ω̄ttbt|t+1

− Ω̄t,t+1αt+1 + c̄t + ψ ′

t (bt|t+1) = 0.

Taking the derivative with respect to αt+1 gives
−Ω̄t−1,tµ

′

t−1|t(bt|t+1)− Ω̄tt + ψ ′′

t (bt|t+1)

b′

t|t+1 − Ω̄t,t+1 = 0.

Eq. (27) shows that the term in brackets is h′′
t (bt|t+1), so

h′′

t (bt|t+1)b′

t|t+1 = Ω̄t,t+1. (58)

Taking the first derivative of (58) with respect to αt+1 gives

h′′′

t (bt|t+1)(b′

t|t+1)
2
+ h′′

t (bt|t+1)b′′

t|t+1 = 0.

Thus we can write

µt|t+1 − bt|t+1 ≈
1
2

h′′′
t (bt|t+1)

[−h′′
t (bt|t+1)]2

=
1

−2Ω̄t,t+1

b′′

t|t+1

b′

t|t+1
.

Replacing the unknown bt|t+1 with its polynomial approximation
Bt|t+1 gives

µt|t+1 ≈ Bt|t+1 +
1

−2Ω̄t,t+1

B′′

t|t+1

B′

t|t+1
.

Evaluating this approximation and its first two derivatives at
αt+1 = at+1 gives the following approximations for µt , µ̇t and µ̈t :

µt ≈ Mt
.
= Bt +

1
−2Ω̄t,t+1

·
B̈t

Ḃt
, (59)

µ̇t ≈ Ṁt
.
= Ḃt +

1
−2Ω̄t,t+1

·

 ...
Bt

Ḃt
−


B̈t

Ḃt

2
, (60)

µ̈t ≈ M̈t
.
= B̈t +

1
−2Ω̄t,t+1

·

 ....
B t

Ḃt
− 3

B̈t
...
Bt

Ḃ2
t

+ 2

B̈t

Ḃt

3
. (61)

Going beyond a second order polynomial approximation of
µt|t+1(αt+1)−bt|t+1(αt+1) is notworth the computational cost and
I set
...
M t

.
=

...
Bt ,

....
M t

.
=

....
B t . (62)
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Appendix G. A perturbed Gaussian density

I introduce here a perturbed univariate Gaussian density
ppert(x;ϑ), with parameter vectorϑ .

= (b, h2, h3, h4, h5, σ
2
tail, πtail,

x̄, K1, K2). The location parameter b is the mode. The derivative
parameters h2 < 0, h3, h4, and h5 give the second through fifth
derivatives of log ppert(x;ϑ) at b. The parameters σ 2

tail > 0, πtail ∈

(0, 1) and x̄ > 0 describe tail behaviour, and are useful when one
wants to ensure that ppert(x;ϑ) dominates a target density in the
tails. The integer order parameters K1 ≥ 1 and K2 ≥ 1 determine
howwell log ppert(x;ϑ) approximates

5
i=2 hi(x−b)i/i! away from

zero. If h4 < 0, then K2 must be even.
I first define the density, then demonstrate some of its useful

properties, then describe how to draw variates. Finally, I discuss
the choice of the secondary parameters σ 2

tail, πtail, x̄, K1 and K2. I
now suppress notation for conditioning on ϑ and assume b = 0. A
simple translation gives the density for other values of b.

G.1. Definition of ppert(x)

I define

ppert(x)
.
=

exp(g(x))
cosh(g(x))

[(1 − πtail)pmain(x)+ πtailptail(x)] ,

where the function g(x) and the densities pmain(x) and ptail(x) are
defined below.

I define

g(x) .=

h3

6
min


x2, x̄2


+

h5

120
min


x4, x̄4


x.

The function g(x) is odd, and equal to h3x3/6 + h5x5/120 in the
interval [−x̄, x̄] where most of the probability mass lies.

I define pmain(x) as

pmain(x)
.
= C−1 exp(h2x2/2)

5K1+2K2
i=0

cix2i,

where

C .
=


∞

−∞

exp(h2x2/2)


5K1+2K2

i=0

cix2i


dx

=

5K1+2K2
i=0

ci


2

−h2

i+ 1
2

Γ


i +

1
2


,

and the polynomial coefficients ci are defined implicitly by the
equation
5K1+2K2

i=0

cix2i
.
=


K1
i=0

1
(2i)!


h3

6
x3 +

h5

120
x5
2i


×


K2
i=0

1
i!


h4

24
x4
i

. (63)

The first factor on the right of (63) is a Taylor series expansion of
cosh( y) around y = 0, evaluated at y = h3x3/6 + h5x5/120. It is
obviously greater than or equal to one. The second factor is a Taylor
series expansion of exp( y) at y = 0, evaluated at y = h4x4/24. If
h4 > 0, the second factor is obviously greater than one. If h4 ≤ 0,
I require K2 to be even and then the second factor is an even-
order expansion. An even order Taylor series expansion of exp( y)
is continuously differentiable, has a limit of ∞ at −∞ and ∞, and
is equal to its own derivative plus a positive term. Therefore it is
positive at any critical value, and therefore positive everywhere.
We conclude that pmain(x) is positive. Note that

pmain(x) = C−1 exp(h2x2/2 + h4x4/24)
× cosh(h3x3/6 + h5x5/120)+ o(x6).
I now define the density ptail(x) as

ptail(x)
.
=


1

2πσ 2
tail

(|x| − x̄)2

σ 2
tail

exp


−
(|x| − x̄)2

2σ 2
tail


|x| ≥ x̄,

0 otherwise,

which is non-negative and integrates to one.
I now show that ppert(x) integrates to one. First observe that

g(x) is an odd function and pmain(x) and ptail(x) are both even. Also,
exp(g(x))/ cosh(g(x)) = 1 + sinh(g(x))/ cosh(g(x)), the sum of
one and an odd function. The product of an odd and an even func-
tion is odd, and odd functions integrate to zero. Therefore ppert(x)
integrates to the same value as (1−πtail)pmain(x)+πtailptail(x) does,
which is one.

I now show that the first five derivatives of log ppert(x) at 0 are
0, h2, h3, h4 and h5. The odd part of log ppert(x) is g(x), so both have
the same odd derivatives. The first, third and fifth derivatives of
g(x) at 0 are 0, h3 and h5. In the interval [−x̄, x̄], the even part of
log ppert(x) is

log

cosh


h3

6
x3 +

h5

120
x5

exp


h2

2
x2 +

h4

24
x4


+ o(x6)


− log cosh

h3

6
x3 +

h5

120
x5

.

Its second and fourth derivatives at x = 0 are h2 and h4.
The density ppert(x) is strictly positive, and for |x| > x̄, it satisfies

ppert(x) ≥ exp(−2|g(x)|)πtailptail(x).

Note that |g(x)| is affine for x > x̄ and for x < −x̄. For all σ 2 < σ 2
tail,

there exists aD > 0 and an x∗ > 0 such that for all x such that |x| >
x∗, ppert(x) ≥ D exp(−x2/2σ 2). The significance of this is that one
can choose σ 2

tail so that ppert(x) dominates a given Gaussian density
in the tails. For any µ and σ 2 < σ 2

tail, (1/σ)φ((x − µ)/σ)/ppert(x)
is bounded.

G.2. Drawing variates from ppert(x)

I use reflection sampling, described in Appendix H, to obtain a
draw from ppert(x): I first draw from its even part, pepert(x) = (1 −

πtail)pmain(x)+πtailptail(x), then replace xwith−xwith probability
max(0,−popert/p

e
pert), where popert(x) is the odd part of ppert(x). Here,

popert(x)/p
e
pert(x) = sinh(g(x))/ cosh(g(x)).

To draw from pepert(x), I first select which of the mixture
components pmain and ptail to draw from, with probabilities (1 −

πtail) and πtail.
I use the rejection sampling method described in Gallant

and Tauchen (1992) to draw from the component pmain(x). The
proposal density is obtained by replacing the ci in pmain(x) by
c̃i

.
= max(ci, 0) and C by C̃ .

=
5K1+2K2

i=0 c̃i. The proposal is a
mixture, with component probabilities c̃i/C̃ . A component i with
non-zero probability has density pi(x) = c−1

i x2i exp(h2x2/2), and
a simple transformation gives the density of z .

= x2 as pi(z) =

c−1
i z i−1/2 exp(h2z/2). This is a Gamma density with shape
parameter i+ 1/2 and rate parameter −h2/2. We draw z, then set
x to

√
z or −

√
z, each with probability 1/2.

I draw from ptail(x) is a similar way. First draw z = (|x| −

x̄)2 from a Gamma density with shape parameter 3/2 and rate
parameter 1/2σ 2

tail, then set x = x̄ +
√
z or x = −x̄ −

√
z, each

with probability 1/2.

G.3. Choice of the secondary parameters

The following valuesworkwell in all applications. I use x̄ = 5σx,
where σx

.
= (−h2)

−1/2, and πtail = 10−9. I set σ 2
tail as described in
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Section 2. I choose K1 and K2 by adding a new term to an expansion
whenever its absolute value at x̄ exceeds the constant δ = 0.1, up
to a maximum of K1 = 2 and K2 = 5. Precisely,

K1 =


1 (h3x̄3 + h5x̄5)2 < 24δ,
2 otherwise.

K2 =


1 0 ≤ (h4x̄4)2 < 2δ,
2 (h4x̄4)2 ≥ 2δ and |h4x̄4|3 < 6δ,
3 |h4x̄4|3 ≥ 6δ and (h4x̄4)4 < 24δ,
4 (h4x̄4)4 ≥ 24δ and |h4x̄4|5 < 120δ,
5 |h4x̄4|5 ≥ 120δ.

I then add one to an odd value of K2 whenever h4 ≤ 0.

Appendix H. Reflection sampling

In this appendix I introduce reflection sampling and show that
it works as described. Let p(x) be any density on RN and pe(x) and
po(x) be its even and odd parts:

pe(x) .=
p(x)+ p(−x)

2
, po(x) .=

p(x)− p(−x)
2

.

Note that pe(x) is a density function.
Reflection sampling is a method for drawing a random variable

X from p(x). One first draws Z from pe(x) andU independently from
the uniform distribution on [0, 1], then sets

X =


−Z, U ≤ max(−po(Z)/pe(Z), 0),
Z, otherwise.

I now show that this gives a draw from p(x). We can write

Pr[X ≤ x] = Pr[X ≤ x, X = Z] + Pr[X > −x, X = −Z]

=

 x1

−∞

· · ·

 xN

−∞

 1

max

−

po(ξ)
pe(ξ) ,0

 pe(ξ) du dξ

+


∞

−x1
· · ·


∞

−xN

 max

−

po(ξ)
pe(ξ) ,0


0

pe(ξ) du dξ

=

 x1

−∞

· · ·

 xN

−∞

1A(ξ)(pe(ξ)+ po(ξ)) dξ

+

 x1

−∞

· · ·

 xN

−∞

1Ac (ξ)pe(ξ) dξ


−


∞

−x1
· · ·


∞

−xN
1A(ξ)po(ξ) dξ,

where A = {ξ ∈ R : po(ξ) < 0}, Ac is the complement of A in
RN , and 1A(x) and 1Ac (x) are indicator functions for A and Ac . Since
po(x) is odd, we can write the last term as

−


∞

−x1
· · ·


∞

−xN
1A(ξ)po(ξ) dξ

=


∞

−x1
· · ·


∞

−xN
1A(ξ)po(−ξ) dξ

=

 x1

−∞

· · ·

 xN

−∞

1Ac (ξ)po(ξ) dξ .

Thus Pr[X ≤ x] =
 x1
−∞

· · ·
 xN
−∞
(pe(ξ)+ po(ξ)) dξ =

 x1
−∞

· · ·
 xN
−∞

p(ξ) dξ , the cumulative distribution function corresponding to the
density p(x). Therefore X is a draw from p(x).

Appendix I. Model specific derivatives

In this appendix I give, for several state space models, the first
five derivatives of log p( yt |αt)with respect to αt .
I.1. A Gaussian stochastic volatility model

In this model, the conditional distribution of yt given αt is
Gaussian with variance exp(αt). We can write

p( yt |αt) =
exp(−αt/2)

√
2π

exp

−

1
2
exp(−αt)y2t


,

ψt(αt)
.
= log p( yt |αt) = −

1
2
[log 2π + αt + exp(−αt)y2t ],

ψ ′

t (αt) = −
1
2
[1 − exp(−αt)y2t ],

ψ ′′

t (αt) = −
1
2
exp(−αt)y2t , ψ ′′′

t (αt) =
1
2
exp(−αt)y2t ,

ψ
(4)
t (αt) = −

1
2
exp(−αt)y2t , ψ

(5)
t (αt) =

1
2
exp(−αt)y2t .

I.2. A Student’s t stochastic volatility model

Here, the conditional distribution of yt given αt is Student’s
t with mean zero, scale exp(αt) and degrees of freedom ν. The
conditional density is

p( yt |αt , ν) =
Γ

ν+1
2


√
νπΓ


ν
2

 exp(−αt/2)

1 +

exp(−αt)y2t
ν

−
ν+1
2

.

Letting zt
.
= exp(−αt)y2t /ν, we can write

ψt(αt)
.
= log p( yt |αt , ν) = log


Γ

ν+1
2


√
νπΓ


ν
2



−
1
2
[αt + (ν + 1) log(1 + zt)].

Noting ∂zt/∂αt = −zt , we compute

ψ ′

t (αt) = −
1
2

+
ν + 1

2
zt

1 + zt
, ψ ′′

t (αt) = −
ν + 1

2
zt

(1 + zt)2
,

ψ ′′′

t (αt) =
ν + 1

2
zt(1 − zt)
(1 + zt)3

,

ψ
(4)
t (αt) = −

ν + 1
2

zt(1 − 4zt + z2t )
(1 + zt)4

,

ψ
(5)
t (αt) =

ν + 1
2

zt(1 − 11zt + 11z2t − z3t )
(1 + zt)5

.

I.3. A Poisson model

In this model, the conditional distribution of yt given αt is
Poisson with mean exp(αt). Thus

p( yt |αt) =
exp(− exp(αt)) exp(αt)

yt

yt !
,

ψt(αt)
.
= log p( yt |αt) = − exp(αt)+ ytαt − log( yt !),

ψ ′

t (αt) = − exp(αt)+ yt ,

ψ ′′

t (αt) = ψ ′′′

t (αt) = ψ
(4)
t (αt) = ψ

(5)
t (αt) = − exp(αt).

I.4. A Gamma–Poisson model

Here, the conditional distribution of yt given αt is Gamma–
Poisson with shape parameter r and mean r exp(αt). Thus
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p( yt |r, αt) =
Γ (r + yt)
yt !Γ (r)

(exp(αt))
yt

(1 + exp(αt))r+yt
,

ψt(αt)
.
= log p( yt |r, αt) = k + ytαt − (r + yt) log(1 + exp(αt)),

ψ ′

t (αt) = yt − (r + yt)
exp(αt)

1 + exp(αt)
,

ψ ′′

t (αt) = −(r + yt)
exp(αt)

(1 + exp(αt))2
,

ψ ′′′

t (αt) = −(r + yt)
exp(αt)− exp(2αt)

(1 + exp(αt))3
,

ψ
(4)
t (αt) = −(r + yt)

exp(αt)− 4 exp(2αt)+ exp(3αt)

(1 + exp(αt))4
,

ψ
(5)
t (αt)

= −(r + yt)
exp(αt)− 11 exp(2αt)+ 11 exp(3αt)− exp(4αt)

(1 + exp(αt))5
.

I.5. An exponential duration model

In this model, the conditional distribution of yt given αt is
exponential with mean exp(αt). Thus

p( yt |αt) = exp(−αt − yt exp(−αt)),

ψt(αt)
.
= log p( yt |αt) = −αt − yt exp(−αt),

ψ ′

t (αt) = −1 + yt exp(−αt),

ψ ′′

t (αt) = −yt exp(−αt), ψ ′′′

t (αt) = yt exp(−αt),

ψ
(4)
t (αt) = −yt exp(−αt), ψ

(5)
t (αt) = yt exp(−αt).
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