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Abstract

Our goal is inference for shape-restricted functions. Our functional form consists of finite linear combinations of basis

functions. Prior elicitation is difficult due to the irregular shape of the parameter space. We show how to elicit priors that

are flexible, theoretically consistent, and proper. We demonstrate that uniform priors over coefficients imply priors over

economically relevant quantities that are quite informative and give an example of a non-uniform prior that addresses this

issue. We introduce simulation methods that meet challenges posed by the shape of the parameter space. We analyze data

from a consumer demand experiment.
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1. Introduction

There are many examples in economics where theoretically consistent choice behavior is described by
multivariate functions subject to monotonicity and curvature restrictions. These functions include utility,
expenditure, indirect utility, production, cost, and profit functions.

Much empirical analysis in economics involves learning about these functions using data on the choices of
consumers and firms. There is a large literature on such inference. See Deaton and Muellbauer (1980), Diewert
and Wales (1987), Lau (1986), Matzkin (1994) and Terrell (1996).

Analysis typically begins with two choices: a parametric class of functions, and constraints on the parameter
vector. The constraints define a restricted parameter set.

The literature identifies two important objectives governing these choices, theoretical consistency and
flexibility. To a large extent, they are competing. Theoretical consistency refers to the extent to which the
e front matter r 2007 Elsevier B.V. All rights reserved.
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functions indexed by elements of the restricted parameter set satisfy the applicable monotonicity and
curvature restrictions over their domain. If the functions satisfy the restrictions throughout the domain, we
have global theoretical consistency. If they satisfy them at a point or in a region, we have local theoretical

consistency or regional theoretical consistency, respectively. Flexibility refers to the variety of functions indexed
by elements of the restricted parameter set, and it too may be more or less global, depending on how large is
the subset of the domain where the relevant flexibility properties hold.

Consider, for example, two commonly used classes of indirect utility functions: the constant elasticity of
substitution (CES) class, and the trans-log class. According to standard theory, indirect utility functions are
non-increasing and quasi-convex in income-normalized prices. The CES class of indirect utility functions, with
non-negativity restrictions on its parameters, is globally theoretically consistent. However, it is quite inflexible,
in the sense that elasticities of substitution cannot vary with prices and income. The trans-log class
(see Christensen et al. (1975)) is locally flexible in the sense that with appropriate choices of the parameters one
can attain arbitrary elasticities at a given point. However, it is not globally theoretically consistent: there are
values of the parameters for which the function is not everywhere on its domain non-increasing and quasi-
convex. We cannot rule out these values without renouncing local flexibility.

There are at least three distinct classes of functions whose flexibility allows the simultaneous approximation
of a continuous function, and any continuous derivatives it may have, on a compact subset X̄ of its theoretical
domain X . We call X̄ the restricted domain and note that it can be chosen to include the empirically relevant
region. The three classes consist of linear combinations of basis functions.

The simultaneous approximation of a function and its derivatives is important for two reasons. First, it is
desirable to approximate the behavior that a function represents, and theoretically consistent choices are often
given in terms of the function’s derivatives. Roy’s identity, for example, gives choices as functions of
derivatives of the indirect utility function. The proximity of two functions in, for example, the sup norm does
not guarantee the proximity of their derivatives: the difference of the two functions may have low amplitude
but high frequency ripples. A second reason is that by simultaneously approximating derivatives, we can
guarantee that the approximating function satisfies the applicable monotonicity and curvature restrictions,
which we can express in terms of derivatives.

Gallant (1981) launches this literature with his Fourier flexible form. Basis functions are sinusoidal, and any
continuous function on X̄ can be approximated arbitrarily closely in sup norm by a linear combination of a
finite number of these basis functions. If the function has bounded derivatives up to some order, we can
simultaneously approximate the function and these derivatives in sup norm.

Unfortunately, sinusoidal functions do not satisfy typical monotonicity and curvature restrictions and so it
can take many terms to build up an approximation. In the context of approximating indirect utility functions,
Gallant (1981) proposes adding linear and quadratic terms.

Barnett and Jonas (1983) use a multivariate Müntz–Szasz expansion to approximate a firm’s unit cost
function, a function of the prices p1; . . . ; pn of n input factors. The set of basis functions is

Yn

i¼1

p
lðiiÞ
i : i 2 Nn

0

( )
,

where N0 � 0; 1; 2; . . . and the sequence lðkÞ, k ¼ 1; 2; . . . ; satisfies
P1

k¼1ð1=lðkÞÞ ¼ 1. Barnett and Jonas
(1983) and Barnett et al. (1991a, b) take lðkÞ ¼ 2�k. Barnett and Yue (1988) give conditions for various modes
of convergence of the function and its derivatives. An advantage of this approach is that all basis functions
satisfy the appropriate monotonicity and curvature restrictions for unit cost functions: they are non-
decreasing and concave.

In unpublished work, Geweke and Petrella (2000) also approximate a firm’s unit cost as a function of input
prices p1; . . . ; pn, but use the following set of basis functions:

Yn

i¼1

pbii
i : i 2 Nn

0

( )
, (1)

where b40. The functions
Qn

i¼1pbii
i satisfying iiob�1, i ¼ 1; . . . ; n, are themselves non-decreasing and concave,

which is convenient for constructing approximations of non-decreasing concave unit cost functions using a
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small number of terms. If the function to approximate has continuous derivatives, we can simultaneously
approximate the function and these derivatives. The approximation result is based on a mathematical result on
the simultaneous approximation of a function and its derivatives using polynomials due to Evard and Jafari
(1994).

For the remainder of the paper, we restrict attention to a particular set of monotonicity and curvature
restrictions: we define a function as regular if it is non-decreasing and concave. In Section 2, we will discuss the
applicability of our results to other cases.

Once we have an approximation of regular functions as linear combinations of basis functions, we can do
inference for functions by doing inference for the number of basis functions to include and their coefficients.
We adopt a Bayesian approach, which has many advantages in this context. Inequality restrictions, which
figure prominently, are more easily handled using a Bayesian, rather than frequentist analysis. Inference on
parameter values, numbers of terms and even competing functional forms1 is done in a unified approach using
methods with known and desirable properties.

Bayesian predictive inference automatically takes into account a posteriori uncertainty about the regular
function. Within a set of functions satisfying the appropriate monotonicity and curvature restrictions and
compatible with observed data, individual functions may differ considerably on regions outside the sample.
Averaging over these functions by taking the posterior expectation may lead to better out-of-sample
prediction than using only one function, however, great its ‘‘likelihood’’.

However, prior elicitation is difficult. The parameter space is infinite-dimensional and irregularly shaped.
Parameters have no obvious direct economic interpretation. It is difficult to think about distributions over
functions.

The main contributions of the paper are the following. We describe classes of basis functions that allow one
to construct a wide variety of regular functions with a small number of terms. We prove a result, similar to
that of Geweke and Petrella (2000), on the simultaneous approximation of a function and its derivatives. We
illustrate using simulations that for a fixed finite number of basis functions, a uniform prior on the set of
coefficients associated with regular functions implies quite informative prior distributions for certain
economically relevant quantities. The unsuspecting practitioner may be assigning very low probability to
regions of the parameter space that are quite plausible. We give an example of a proper, non-uniform prior
over coefficients that implies a more diffuse prior distribution for these economically relevant quantities. We
propose methods for prior and posterior simulation that meet the challenge posed by the shape of the
parameter space and made more difficult when we use the kind of non-uniform prior that we suggest in this
paper.

Section 2 concerns the approximation of functions by linear combinations of a finite number of basis
functions. We introduce a wide variety of sets of basis functions nesting the set of basis functions used by
Geweke and Petrella (2000). Following them, we apply an approximation result by Evard and Jafari (1994).
We show that using any of our sets of basis functions, any twice continuously differentiable regular function
can be arbitrarily well approximated on a compact subset X̄ of its theoretical domain X by a function that is
regular on X̄ . The approximation is a simultaneous approximation (in sup norm) of the function, its gradient
and its Hessian.

In Section 3, we discuss prior distributions over regular functions. We define notions of flexibility and
theoretical consistency for these prior distributions, and give sufficient conditions for both. We describe an
approach to prior elicitation that emphasizes economically relevant quantities rather than the parameters
themselves, which are difficult to interpret. We discuss the non-trivial issue of ensuring that the prior is proper,
which is essential for model comparison using Bayes factors.

We simulate from a uniform prior distribution to illustrate what this prior implies about the distribution of
economically relevant features of the regular function. Interpreting the regular function as a utility function,
we consider the marginal rate of substitution between two goods at a typical point in the consumption set.
Interpreting the function as a negative indirect utility function, we consider ratios of quantities demanded at a
typical point in the space of income-normalized prices. We show that the implied prior distribution of these
features of the regular function is quite informative, and argue that the uniform prior assigns low probability
1See Gordon (1996) on Bayesian comparison of competing functional forms.
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to sets of functions that many would find plausible. We give an example of a non-uniform prior and show that
it implies more diffuse prior distributions over marginal rates of substitution and ratios of quantities
demanded.

In Section 4, we discuss the problem of prior and posterior simulation of the unknown coefficients. The
shape of the parameter space presents special problems, and these are exacerbated when we adopt the kind of
non-uniform prior we propose in Section 3. To overcome these problems we propose Markov chain Monte
Carlo (MCMC) simulation methods based on three Metropolis–Hastings (see Metropolis et al., 1953 and
Hastings, 1970) proposal distributions adapted to the shape of the parameter space.

In Section 5, we present an empirical application of our econometric methods. It is common in empirical
applications to adopt a measurement error approach to construct a data density, whereby an error
distribution accounts for discrepancies between observed choices and the optimal choices given by the regular
function. Instead, we use a stochastic model for observed choices where distributions over choices are
determined by the regular function itself. Theil (1974) and McCausland (2004) give very different theoretical
underpinnings for the model. We analyze individual choice data from a consumer experiment described in
Harbaugh et al. (2001).

We conclude in Section 6.

2. Parametric classes of functions

Our objective is Bayesian learning, from choice data, about a regular function representing choice behavior.
For Bayesian analysis, we must be able to express prior and posterior uncertainty about these functions in
terms of probability distributions. We make use of a parametric class of functions, which permits us to express
this uncertainty in terms of distributions over parameters. Functions in our parametric class are linear
combinations of basis functions. Unknown parameters are the coefficients of the basis functions and their
number. The regularity of functions defines a restricted parameter set.

We defined, for definiteness, a particular kind of regularity, but we will see that this does not restrict the
applicability of our results and methods as much as it may first appear.

We do not know of any results that allow us to approximate any regular function on an unbounded
set such as the classical consumption set X ¼ Rn

þ. We settle for approximation on a compact restricted
domain X̄ � X , which we can always choose to include the empirically relevant region for any given
application.

We also restrict functions to be twice continuously differentiable. This ensures that we can simultaneously
approximate the function, its gradient and its Hessian.

We want to be able to generate a reasonable variety of regular functions using a small number of terms. To
this end, we introduce a transformation f on X . Rather than directly approximate a function u on X , we will
approximate u � f�1 on fðX̄ Þ. Choosing a f that is regular itself makes it easier to approximate regular
functions, since first order monomials of f are then regular.

2.1. Regularity

Most of the results of this paper pertain to non-decreasing and concave functions, which we call regular.
With simple and obvious modifications, we can replace non-decreasing with non-increasing or concave with
convex.

Replacing concavity with quasi-concavity (for application to utility functions) or quasi-convexity (indirect
utility functions) is a little more problematic. This is because we take advantage of the fact that the set of
concave functions is closed under convex combination. Quasi-concave and quasi-convex functions do not
have this property.

However, we argue that imposing concavity on utility functions is innocuous for our purposes. We grant
that it is restrictive: while all complete, continuous, monotone and convex preferences have quasi-concave
utility representations, not all have concave utility representations: see deFinetti (1949) or the document
‘‘A Pedagogical Example of Non-concavifiable Preferences’’ by James Schummer, available at the author’s
website. Kannai (1974) shows, however, that on any non-empty compact set, a complete, continuous,
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monotone and convex preference can be arbitrarily well approximated (in a sense made precise in Lemma 2 of
that article) by a complete, continuous, monotone and convex preference that has a concave utility
representation. Given that we are already restricting the domain of utility functions to a compact set X̄ to
obtain an approximation result, concavity is not a severe additional restriction.

Interpreting the indirect utility function as the representation of preferences over income-normalized prices,
we can make a similar argument about imposing convexity on indirect utility functions.

2.2. Restricted domains

The choice of a restricted domain X̄ � X is part of the prior specification, so it should not depend on
observed choices. If the decision maker is a price-taker, then prices and income are exogenous and X̄ can
depend on observed prices and income. We choose X̄ to include the empirically relevant region. One natural
choice for X̄ is a hyper-rectangle of the form ½0; x̄1� � � � � � ½0; x̄n�, for some x̄ 2 Rn

þþ. Another is a simplex of
the form fx 2 X :w0xpmg, for some w 2 Rn

þþ and m 2 Rþþ.
Since we impose regularity on the approximating function only on X̄ , enlarging X̄ serves the goal of

theoretical consistency. However, one trades off flexibility: as X̄ grows, the set of parameters for which the
function is regular on X̄ shrinks. Our approximation result holds for any compact X̄ , however large, but we
lose flexibility for any fixed number of terms.

2.3. A parametric functional form

We first introduce some definitions that help simplify notation for monomials and polynomials on Rn.
A multi-index of length n is an i 2 Nn

0, where N0 is the set of non-negative integers. For vectors x 2 Rn and
multi-indices i 2 Nn

0, we define the notation xi �
Qn

i¼1xii
i . We will call a finite subset I 	 Nn

0 a constellation of
multi-indices. Thus for any multi-index i, xi is a monomial and for any constellation I and vector ðliÞi2I of
coefficients,

P
i2Ilix

i is a polynomial.
We want to be able to construct a wide variety of regular functions using a small number of terms. To do

this, we introduce a transformation f:X ! Rn of the domain and choose as our basis functions the set of
monomials f½fðxÞ�i: i 2 Nn

0g. In effect, we replace the problem of approximating the regular function u on X̄

with that of approximating u � f�1 on fðX̄ Þ.
In the simulations and empirical example of this paper, we use the following choice of f:

fðxÞ ¼ log
x1 þ x1
x
1 þ x1

� �
; . . . ; log

xn þ xn

x
n þ xn

� �� �
8x 2 X , (2)

where x 2 Rn
þþ and x
 2 X̄ are fixed constants that the econometrician chooses in advance for computational

convenience.
The vector x must be strictly positive, to ensure that the region fðX̄ Þ on which we approximate u � f�1 is

compact. By choosing small elements of x, we obtain flexibility at small scales, but we also enlarge fðX̄ Þ, which
adversely affects flexibility at other scales. The constant x
 establishes the origin of the transformed choice
space fðX̄ Þ, since fðx
Þ ¼ 0. We find in practice that we obtain better flexibility for a fixed number of terms by
choosing X̄ , x and x
 such that fðx
Þ is near the centroid of fðX̄ Þ.

For the particular choice of fðxÞ in Eq. (2), the set of monomials in fðxÞ has some useful properties.
It includes the regular functions logððxi þ xiÞ=ðx



i þ xiÞÞ, i ¼ 1; . . . ; n. For small values of xi, linear

combinations
Pn

i¼1li logððxi þ xiÞ=ðx


i þ xiÞÞ of these regular functions approximate Cobb–Douglas utility

functions with arbitrary expenditure shares li=
Pn

j¼1lj. When we add higher order monomials in fðxÞ
to the utility function, we allow the shares to change with prices and income. Also for small values of the xi,
any trans-log indirect utility function can be approximated by a linear combination of a small number of
terms.

Geweke and Petrella’s (2000) basis functions, given in Eq. (1), can be interpreted as monomials in f for the
following alternative choice of f:

fðxÞ ¼ ðxb
1; . . . ; x

b
nÞ 8x 2 X .
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We want to construct a sequence of families of polynomials in fðxÞ with growing flexibility. We choose a
sequence fIkg

1
k¼0 of constellations increasing

2 towards Nn
0nf0g. The set of polynomials

P
i2Ik

li½fðxÞ�i becomes
more flexible as k increases. Excluding the multi-index 0 means excluding the constant term of uð�; lÞ. We do
this to simplify prior elicitation and simulation. The exclusion means that we can only approximate a regular
function u up to an additive constant, but this is innocuous.

One natural choice of Ik is the sequence of hyper-rectangular lattices fi 2 Nn
0: iipk � 1 for all ig, which we

use in this paper. Another is the sequence of simplicial lattices fi 2 Nn
0:
Pn

i¼1iipk � 1g.
For given constellation index k 2 N0, coefficient vector l � ðliÞi2Ik

, and transformation f: X̄ ! R, we
define the function uð�; lÞ: X̄ ! R by

uðx; lÞ �
X
i2Ik

li½fðxÞ�i 8x 2 X .

The unknown parameters of our approximation are the constellation index k and the vector l � ðliÞi2Ik
of

monomial coefficients. For each k 2 N0, we define Lk
X̄
as the set of vectors l of length3 jIkj associated with

functions that are regular on X̄ :

Lk
X̄
� fl 2 RjIkj: uð�; lÞ is regular on X̄ g. (3)

We also define LX̄ �
S1

k¼1L
k
X̄
, the complete set of vectors l associated with functions that are regular on X̄ .

2.4. Results

We now present two results on the parametric functional form. We will see in Section 3 that the following
result is relevant for prior elicitation. In Section 4, we show that it is important for prior and posterior
simulation.

Result 2.1. For every k 2 f1; 2; . . .g, Lk
X̄

is a convex cone.

Proof. The set of functions regular on X̄ is closed under addition and positive scalar multiplication. Therefore
Lk

X̄
is a convex cone. &

The following alternate proof yields some important insights that are relevant for later sections. We can
express the regularity conditions as follows. For all x 2 X̄ ,

quðx; lÞ
qx

¼
X
i2Ik

li
q½fðxÞ�i

qx
X0 (4)

and for all x 2 X and v 2 Rn,

v0
q2uðx; lÞ
qx qx0

v ¼
X
i2Ik

liv0
q2½fðxÞ�i

qx qx0
vp0. (5)

For every choice of x 2 X̄ , Eq. (4) gives n linear inequalities in l, one for each component of the gradient.
For every choice of x 2 X̄ and v 2 Rn, Eq. (5) gives another linear inequality in l. We see, therefore, that the
parameter space Lk

X̄
is the intersection of half spaces defined by the inequalities above. The half spaces are

convex, so their intersection is as well.
The following approximation result tells us that we can simultaneously approximate any twice continuously

differentiable function u, regular on X̄ , together with its gradient and Hessian, arbitrarily closely on X̄ , up to
an additive constant. The approximation of the gradient is important because we want to approximate the
behavior that the function represents, which is often given in terms of derivatives. The approximation of the
gradient and Hessian is important for guaranteeing that the approximating function is regular on X̄ . In
practice, it is much easier to check that the approximating function is regular on X̄ than to verify its proximity
to some function regular on X̄ . For notational convenience, we define the following norm for twice
2A sequence of sets fIkg
1
k¼0 increases towards set I , denoted Ik " I , if Ik � Ikþ1 for all k 2 N0 and

S1
k¼0Ik ¼ I .

3For any set A, we denote by jAj the cardinality of A.



ARTICLE IN PRESS
W.J. McCausland / Journal of Econometrics 142 (2008) 484–507490
continuously differentiable functions:

kf k � max sup
x2X̄

jf ðxÞj; sup
x2X̄ ;i2f1;...;ng

qf ðxÞ

qxi

����
����; sup

x2X̄ ;i;j2f1;...;ng

qf ðxÞ

qxi qxj

����
����

" #
.

The result is a generalization of an unpublished result by Geweke and Petrella (2000). It is they who
recognized the significance of a result by Evard and Jafari (1994) on the simultaneous approximation of a
function and its derivatives by polynomials. The modest contributions in this section include the recognition
that different transformations f can be used to generate sets of basis functions and a complete proof of the
following result.

Result 2.2 (Approximation). Suppose the transformation f: X̄ ! R is such that fðX̄ Þ is compact and that the

inverse f�1 on fðX̄ Þ exists and is twice continuously differentiable. Then for every twice continuously

differentiable u:X ! R regular on X̄ , and every �40, there exists a l 2 LX̄ and a constant c such that

kcþ uð�; lÞ � uð�Þko�. (6)

Proof. Let u be a twice continuously differentiable regular function and let �40.
Rather than approximating u directly, which may be on the boundary of the regular region, we will

approximate a nearby function û: X̄ ! R in the interior. We choose û close enough to u that the
approximation of û is a sufficiently close approximation of u itself. The function û is defined by

ûðxÞ � uðxÞ þ
�

2

Yn

i¼1

ð1� ex̄i�xi Þ 8x 2 X̄ ,

where x̄i ¼ maxx2X̄ xi, i ¼ 1; . . . ; n. Since u is non-decreasing, concave and twice continuously differentiable on
X̄ , û is increasing, strictly concave and twice continuously differentiable on X̄ . Also,

kûð�Þ � uð�Þkp
�

2
. (7)

A direct corollary of Corollary 3 of Evard and Jafari (1994) is that for every twice continuously differentiable
function f : X̄ ! R, and every �040, there exists a polynomial p: X̄ ! R such that for all i; j 2 f1; . . . ; ng and all
x 2 X̄ ,

jf ðxÞ � pðxÞjo�0;
qf

qxi

�
qp

qxi

����
����o�0 and

q2f

qxi qxj

�
q2p

qxi qxj

����
����o�0.

Since f has an inverse f�1 that is twice continuously differentiable on X̄ , û � f�1 is also twice continuously
differentiable on fðX̄ Þ. Furthermore, fðX̄ Þ is compact. Therefore the corollary implies that for all �040, there
exists a l 2

S1
k¼1R

jIk j and a c such that for all i; j 2 f1; . . . ; ng and all z 2 fðX̄ Þ,

cþ
X
i2Ik

lizi � ðû � f
�1
ÞðzÞ

�����
�����o�0,

q
qzi

X
i2Ik

lizi �
q
qzi

ðû � f�1ÞðzÞ

�����
�����o�0

and

q2

qzi qzj

X
i2Ik

lizi �
q2

qzi qzj

ðû � f�1ÞðzÞ

�����
�����o�0.

The function f maps X̄ to fðX̄ Þ, and therefore for all i; j 2 f1; . . . ; ng and x 2 X̄ ,

cþ
X
i2Ik

li½fðxÞ�i � ûðxÞ

�����
����� ¼ jcþ uðx; lÞ � ûðxÞjo�0,
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q
qxi

uðx; lÞ �
q
qxi

ûðxÞ

����
����o�0M1

and

q2

qxi qxj

uðx; lÞ �
q2

qxi qxj

ûðxÞ

����
����o�0M2,

where M1 and M2, derived from uniform bounds on the derivatives of f on X̄ , do not depend on x.
We can choose �0 such that

kcþ uðx; lÞ � ûðxÞko
�

2
(8)

and for all x 2 X̄ and all i; j 2 f1; . . . ; ng,

quðx; lÞ
qx

X0, (9)

and

v0
q2uðx; lÞ
qx qx0

vp0 8v 2 Rn. (10)

Eqs. (7), (8), and the triangle inequality guarantee that (6) holds. Eqs. (9) and (10) guarantee that l 2 LX̄ . &

3. Priors

We have just described parametric classes of regular functions. In this section, we discuss the problem of
expressing prior uncertainty about regular functions by specifying a prior probability distribution for the
constellation index k and the coefficient vector l ¼ ðliÞi2Ik

. The ideas expressed in this section apply to various
choices of the transformation f and even to different systems of basis functions, such as those of the Fourier
flexible form and the Müntz–Szasz expansion. For definiteness, we take X̄ ¼ ½0; x̄1� � � � � � ½0; x̄n� and f
defined in (2).

We first define notions of flexibility and theoretical consistency for these prior distributions and give
sufficient conditions for both. We then focus on the problem of eliciting prior distributions over Lk

X̄
for fixed

k. We address the issue of ensuring that these are proper, which is important for inference on k and model
comparison using Bayes factors.

We show that if the regular function is a utility function, a uniform prior implies prior distributions over
marginal rates of substitution that many would consider too informative. When the regular function is a
negative indirect utility function, the prior distributions of ratios of quantities demanded are very informative.
We give an example of a non-uniform prior that implies more diffuse prior distributions over marginal rates of
substitution or ratios of quantities.

3.1. Flexibility and theoretical consistency

We will say that a prior is flexible if for any twice continuously differentiable function u that is regular
on X̄ , there is a constant c such that the prior assigns positive probability to any k � k-neighborhood of u� c.
We will say that it is theoretically consistent if it assigns zero probability to the set of functions that are not
regular on X̄ . The following result gives sufficient conditions on the prior for flexibility and theoretical
consistency.

Result 3.1. If
P1

k¼Kpk40 for all K 2 N, and the conditional distributions ljk have support Lk
X̄
, then the prior is

flexible and theoretically consistent.

Proof. Let u:X ! R be twice continuously differentiable and regular on X̄ , and let �40. By Result 2.2, we
can find a k 2 N and a l
 2 Lk

X̄
such that kcþ uðx; l
Þ � uðxÞko�=2. The conditional distribution ljk, whose
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support is Lk
X̄
, assigns positive probability to the set

L
 � l 2 Lk
X̄
: jl
i � lijo

�

2jIkjkfðxÞ
i
k
8i 2 Ik

� �
.

For all l 2 L
, kuð�; lÞ � uð�; l
Þko �
2
, and therefore kcþ uð�; lÞ � uð�Þko�. Since

P1
k¼Kpk40 for all K 2 N, the

prior assigns positive probability to L
, and therefore positive probability to any k � k-neighborhood of u. The
fact that the prior assigns zero probability to the set of functions that are not regular on X̄ follows trivially
from the fact that the support of the prior is LX̄ . &

3.2. Conditional prior distributions on Lk
X̄

The conditional priors ljk are distributions on the Lk
X̄
. Except for being convex cones, the Lk

X̄
are irregularly

shaped, and this makes elicitation difficult.
Utility functions that differ only up to the multiplication of a positive constant are observationally

equivalent. The same holds for negative indirect utility functions. If the regular function is a utility function or
a negative indirect utility function, then without loss of generality, we can normalize it by imposing the
condition uðx̄; lÞ � uð0; lÞ ¼ 1. This is a linear equality in l, so it defines a hyperplane in RjIkj. By Result A.1,
the intersection of this hyperplane with Lk

X̄
is bounded. This implies that a uniform prior on this intersection is

proper.
This is not the only possible normalization. For illustrative purposes we will consider the following

normalization:

Xn

i¼1

bi

DuiðlÞ
x̄i

¼ 1,

where DuiðlÞ is the increase in u as xi goes from the lower extreme of 0 to the upper extreme of x̄i, with all other
xj set to the reference value x
j . That is,

DuiðlÞ � uðx
 þ ðx̄i � x
i Þei; lÞ � uðx
 þ ð0� x
i Þei; lÞ,

where ei is the unit vector on the ith coordinate axis in Rn. We can think of Dui=x̄i as the average of the
gradient component qu=qxi on the line segment from x
 þ ð0� x
i Þei to x
 þ ðx̄i � x
i Þei.

This normalization is also a linear equality in l, and using Result A.1, we can show that the hyperplane it
defines has a bounded intersection with Lk

X̄
. The uniform distribution on this intersection is therefore proper.

Using the methods described in Section 4, we simulate from this uniform distribution. We take n ¼ 2,
x ¼ ð0:01; 0:01Þ, x
 ¼ ð0:1; 0:1Þ, x̄ ¼ ð1:0; 1:0Þ, and b ¼ ð0:5; 0:5Þ.

The first panel of Fig. 1 shows a histogram of the prior distribution of logðquðx
; lÞ=qx1Þ�

logðquðx
; lÞ=qx2Þ. If we interpret u as a utility function, this quantity is the log marginal rate of substitution
between goods 1 and 2 at the commodity bundle x
. If u is a negative indirect utility function, it is the log ratio
of the quantities demanded of goods 1 and 2 at income-normalized prices x
.

We see that despite being uniform on the set

l 2 Lk
X̄
:
Xn

i¼1

bi

DuiðlÞ
x̄i

¼ 1

( )
,

the prior is quite informative about the value of logðquðx
; lÞ=qx1Þ � logðquðx
; lÞ=qx2Þ. Specifically, it puts
very low probability on the regions where quðx
; lÞ=qx1 is much smaller or much greater than quðx
; lÞ=qx2.
Many will find these regions quite plausible for certain applications and will thus find the prior inappropriate.

We would like to make clear that the point we are making concerns scale, not location. We can always
change the units of measurement of commodity quantities (and adjust prices accordingly) to change the
location of this distribution.

To persuade the skeptical reader that the prior is not diffuse enough for some applications, we consider the
following prior elicitation exercise, concerning individual consumption of two goods: gasoline and a
composite good representing everything else. Hypothetical individual A earns $30,000 after tax, takes the
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Fig. 1. Histograms of logðquðx
; lÞ=qx1Þ � logðquðx
; lÞ=qx2Þ for three different priors.
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subway to work and buys ten gallons of gasoline per month. B earns the same amount, drives to work from
the suburbs and spends 100 gallons of gasoline a month. The two individuals are hardly unusual, but the ratio
of quantities differs by a factor of ten between them, even though they have the same income and face the
same prices. A factor of ten corresponds to slightly more than three standard deviations. It is quite plausible
that if the price of gasoline doubled, A would not reduce consumption to less than 35 gallons a month. It is
also plausible that if the price of gasoline dropped by a factor of five, B would not increase consumption to
more than 35 gallons a month. This would imply that their marginal rates of substitution at 35 gallons per
month differ by at least a factor of ten.

A sensitivity analysis in Appendix B suggests that for more than two goods, the distribution of
logðquðx
; lÞ=qx1Þ � logðquðx
; lÞ=qx2Þ becomes even more informative. For n ¼ 3 goods, a factor of ten in the
ratio of gradient components quðx
; lÞ=qx1 and quðx
; lÞ=qx2 corresponds to about 4.5 standard deviations.

Given the uniformity of the prior, the assignment of low probability to the regions where one gradient
component is much smaller than the other must be because these regions have very low volume. Since these
regions are also near the boundary of the set, we will refer to them (loosely) as the ‘‘tight corners’’ of Lk

X̄
.

Intuitively, for fixed quðx
; lÞ=qx1 and quðx
; lÞ=qx2, it is easier to construct regular functions when they are



ARTICLE IN PRESS
W.J. McCausland / Journal of Econometrics 142 (2008) 484–507494
nearly equal than when one is much larger than the other: when they are nearly equal, there is more wiggle
room.

We illustrate using an example that the distribution of logðquðx; lÞ=qx1Þ � logðquðx; lÞ=qx2Þ is sensitive to
the choice of normalization. We tilt the hyperplane defined by the normalization b1Du1=x̄i þ b2Du2x̄i ¼ 1 by
replacing b ¼ ð1

2
; 1
2
Þ with b ¼ ð1

6
; 5
6
Þ. The second panel of Fig. 1 shows the prior histogram for

logðquðx
; lÞ=qx1Þ � logðquðx
; lÞ=qx2Þ implied by a uniform prior on the intersection of Lk
X̄

with the new
hyperplane. We see that the location of the distribution changes, but little else. In particular, the prior is still
very informative.

We conjecture that the tight distribution of logðquðx
; lÞ=qx1Þ � logðquðx
; lÞ=qx2Þ arises not because of the
particular choice of normalization but because the prior is uniform on a truncated hyperplane: such a prior
puts low probability in the vicinity of any given bounding hyper-plane of the form v0l ¼ 0, such as
quðx
; lÞ=qxi ¼ 0. The results in Appendix B suggest that as k increases and uð�; lÞ becomes more flexible, the
prior puts less and less probability in the vicinity of the bounding hyper-plane defined by quðx
; lÞ=qxi ¼ 0.
Intuitively, as k increases and the dimension of Lk

X̄
increases with it, the curvature of its boundary increases as

well, reducing the relative volume close to the hyper-plane.
We remark that the results shown in Fig. 1 depend on fixed parameters and the choice of the point x at

which to evaluate logðquðx; lÞ=qx1Þ � logðquðx; lÞ=qx2Þ: Appendix B shows the results of a sensitivity analysis.
They suggest that the informativeness of the prior is robust to variations in these quantities.

If we want to make the prior distribution of logðquðx
; lÞ=qx1Þ � logðquðx
; lÞ=qx2Þ more diffuse, we can do
so by putting more probability mass near the boundary of Lk

X̄
. As an example, we multiply the prior by the

factor

Yn

i¼1

bi

Dui

x̄i

þ d
� ��p

,

where d and p are positive constants. The term d ensures that the factor is bounded on the truncated hyper-
plane fl 2 Lk

X̄
: b1Du1ðlÞ=x̄i þ b2Du2ðlÞ=x̄i ¼ 1g, so the prior remains proper.

The third panel of Fig. 1 shows the prior histogram of logðquðx
; lÞ=qx1Þ � logðquðx
; lÞ=qx2Þ for the
modified prior, with d ¼ 0:001 and p ¼ �3. We see that it is more diffuse.

The three examples we have just seen suggest that we can center the prior over whatever value of
logðquðx
; lÞ=qx1Þ � logðquðx
; lÞ=qx2Þ is appropriate for a given application and also independently choose
the degree of dispersion.

The priors in these three examples have support equal to the intersection of Lk
X̄

with a hyperplane
fl: v0l ¼ 1g, where v is a vector defining a normalization of the regular function u. While utility and indirect
utility functions can be normalized without affecting optimal choices, expenditure, cost and profit functions
cannot. For flexibility in these cases, we would like to elicit a prior with full support Lk

X̄
. Rather than

normalizing the regular function, we can choose a density f of the form

f ðlÞ / gðv0lÞðv0lÞ�ðjIk j�1Þ; l 2 Lk
X̄
, (11)

where g is a proper univariate density function. The level curves of f are parallel to the hyperplane fl: v0l ¼ 1g,
and the distribution of v0l is given by the density g.

If we want to elicit a prior whose contours are not all parallel to the hyperplane fl: v0l ¼ 1g, but has the
property that the scale v0l and the normalized regular function ð1=v0lÞuð�; lÞ are independent, we can choose a
density of the form

f ðlÞ / gðv0lÞðv0lÞ�ðjIk j�1ÞhðlÞ; l 2 Lk
X̄
, (12)

where h is a homogeneous degree 0 function.
For practical reasons, it turns out to be useful to elicit a prior with full support Lk

X̄
even when the regular

function is a utility or negative indirect utility function. And we can always ignore the unidentified scale. This
means, for example, that we can simulate the uniform distribution on the intersection of Lk

X̄
and the

hyperplane fl: v0l ¼ 1g by simulating the density in (11) and normalizing draws by dividing by v0l. The
distribution of the scale v0l will have density given by g.
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To simulate the third, non-uniform, prior we can simulate the density in (12) with g arbitrary and

hðlÞ �
Yn

i¼1

biDui=x̄iPn
j¼1bjDuj=x̄i

þ d

 !�p

(13)

and normalize by dividing by v0l.

4. Prior and posterior simulation

In the previous section, we describe conditional prior densities f ðljkÞ on the convex cones Lk
X̄
whose union

is the regular parameter space. In this section we describe methods for MCMC simulation of distributions
on Lk

X̄
.

We saw in the previous section that the regions near the boundary of the parameter space Lk
X̄
where one or

more of the gradient components is much smaller than the rest have very low volume. Thus the problems of
simulating a distribution on this space are similar to those of simulating a distribution on a cigar-shaped object
with long pointy ends. The problem is exacerbated when we want to simulate a distribution, such as the third
prior of the previous section, that concentrates probability in the tight corners of the parameter space. An
efficient chain for simulating the target distribution must be able to spend enough time in the tight corners, but
also move quickly in and out of them.

Random walk Metropolis chains with constant proposal variance matrices work poorly. If the eigenvalues
of the variance are large enough to generate steps big enough for efficiently exploring the central region of Lk

X̄
,

then the acceptance probability in the tight corners is intolerably low. We experimented with
Metropolis–Hastings random walks where the proposal variance varied according to how close the current
state of the chain was to various bounding planes. This is quite difficult to do, and the chain’s numerical
efficiency is fairly low. The problem is that it takes too many iterations to move in and out of the tight corners.

The Metropolis–Hastings proposal distributions we present here do not depend on the target distribution.
So we make no distinction between prior and posterior simulation and leave open the question of how the data
density is specified. For the simulations reported in this paper, we obtain satisfactory numerical efficiency for
both prior and posterior simulation. We believe there is scope for improving these proposals by taking
advantage of features of the prior and likelihood, but we do not explore this here.

We describe three Metropolis–Hastings updates that can be used in combination (either a mixture or a
sweep) to simulate prior and posterior distributions efficiently on the parameter subspace Lk

X̄
.

The first update generates a line passing through the current state l in a random direction, then draws a
random proposal l
 on a segment of this line containing its intersection with Lk

X̄
. This allows large jumps

across Lk
X̄
with reasonable probability.

The second and third updates draw a random proposal l
 on a ray emanating from a point near the
boundary of Lk

X̄
and passing through the current state l. It is these two updates which ensure that the chain

can quickly move in and out of the tight corners of Lk
X̄
.

4.1. Definitions

We introduce a few preliminary definitions that will be important in the next sections. We define, for each
good i, the univariate function ui: ½0; x̄i� ! R as the restriction of uðx; lÞ to the line segment
fx 2 X̄ : xj ¼ x
j ; jaig, parallel to the ith coordinate axis but shifted so that the xj, jai, are fixed at x
j
rather than zero. That is,

uiðxiÞ ¼ uðx
 þ ðxi � x
i ÞeiÞ; xi 2 ½0; x̄i�,

where ei is the unit length n-vector on the ith co-ordinate axis.
Note that

fðx
 þ ðxi � x
i ÞeiÞ ¼ log
xi þ xi

x
i þ xi

� �
ei.
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The only non-zero element of this vector is the ith, which means that the monomial ½fðx
 þ ðxi � x
i Þei�
i is

non-zero only for i ¼ kei, k ¼ 1; . . . ; k � 1. Thus the univariate ui depends only the elements li such that
i ¼ kei, k ¼ 1; . . . ; k � 1.

This leads to the following partition of the vector l:

l ¼ ðlð1Þ; . . . ; lðnÞ; l�Þ,

where lðiÞ consists of the elements li for which ij ¼ 0 for all jai. In other terms,

lðiÞ � ðlei
; l2ei

; . . . ; lðk�1Þei
Þ; i ¼ 1; . . . ; n.

The subvector l� consists of all remaining elements of l.
Since fðx
 þ ðxi � x
i ÞeiÞ is non-zero only for i ¼ kei, k ¼ 1; . . . ; k � 1, ui depends only on the

sub-vector lðiÞ.
4.2. A convex cone enclosing Lk
X̄

We draw all three random proposals within a convex cone fl 2 RjIkj:VlX0g, where V is an Nv � jIkjmatrix
such that the cone contains Lk

X̄
. The tighter the fit of VlX0 to Lk

X̄
, the less often we draw proposals that are

not in the regular set Lk
X̄
.

It is easy to construct matrices V such that VlX0 contains Lk
X̄
. Eqs. (4) and (5), which give various

necessary conditions for regularity, are inequalities of the form vlX0, where v is a row vector of length jIkj.
Constructing V involves vertically stacking a number Nv of row vectors vj satisfying vjlX0.

For the prior and posterior simulations reported in this paper, we use Nv ¼ n � Jn vectors, where J ¼ 20.
Each vector is indexed by a pair ði; iÞ 2 f1; . . . ; ng � IJ . For each i and i, we generate a row of V using the
necessary conditions

quðxðiÞ; lÞ
qxi

�
quðxðiþeiÞ; lÞ

qxi

X0; iipJ;

quðxðiÞ; lÞ
qxi

X0; ii ¼ J;

8>>><
>>>:

where fxðiÞ: i 2 IJg is a grid of points. Each xðiÞ is defined by

fðxðiÞÞ ¼ zlo
1 þ

i1
J � 1

ðzhi
1 � zlo

1 Þ; . . . ; z
lo
n þ

in
J � 1

ðzhi
n � zlo

n Þ

� �
,

where zlo � fð0Þ and zhi � fðx̄Þ.
4.3. A first proposal

We start at the current state l and generate a random proposal l
.
The proposal consists of three steps. First, we draw a random direction vector w 2 RjIkj from a discrete

uniform distribution over a set of precomputed direction vectors. Then we compute p�p0 and pþX0
such that lþ ðp�Þw and lþ ðpþÞw are on the boundary of the cone VlX0 enclosing Lk

X̄
. Finally, we draw p

from the uniform distribution on ½p�;pþ� and construct the proposal l
 ¼ lþ pw. We accept l
 with
probability

min 1;
f ðl
Þ
f ðlÞ

� �
,

where f is the unnormalized target density. Evaluating f ðl
Þ includes determining whether l
 2 Lk
X̄
. We now

describe some of these steps in more detail.
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4.3.1. Computing p� and pþ
We compute pþ as the smallest positive value of p for which V ðlþ pwÞX0. That is, we choose

pþ ¼ min
j2f1;...;Nvg

�
ðVlÞj
ðVwÞj

: ðVwÞjp0

( )
.

Similarly,

p� ¼ max
j2f1;...;Nvg

�
ðVlÞj
ðVwÞj

: ðVwÞjX0

( )
.

4.3.2. Drawing random directions

For the simulations reported in this paper, we use the following set of directions. There is a direction
wðiÞ 2 RjIkj for each multi-index i 2 Iknfe1; . . . ; eng. For multi-indices i and k, wðiÞk is element k of the direction
vector wðiÞ and is given by the coefficient of zk in the n-variate polynomial

Qn
i¼1Pii ðaizi þ biÞ, where Pj is the jth

Legendre polynomial, and aizi þ bi is the linear transformation of zi � fiðxÞ mapping ½zlo
i ; z

hi
i � to ½�1; 1�. As

before, zlo � fð0Þ and zhi � fðx̄Þ. In other terms,

wðiÞk ¼
Yn

i¼1

Xii
j¼ki

Lii ;j
j

ki

� �
aki

i b
j�ki

i ,

where ai ¼ 2=ðzhi
i � zlo

i Þ, bi ¼ �ðz
hi
i þ zlo

i Þ=ðz
hi
i � zlo

i Þ, and Lij is the coefficient of the jth order monomial in the
ith Legendre polynomial.

This set of directions has two useful properties. First, the n-variate polynomials
P

k2Ik
wðiÞk zk are orthogonal

on fðX̄ Þ, inheriting the orthogonality of the (univariate) Legendre polynomials on ½�1; 1�. This minimizes
redundancy among the directions. Second, because the coordinate vectors ei are excluded, VwðiÞk always has
both positive and negative elements, which ensures that the values p� and pþ exist and are always finite.

4.3.3. Checking regularity

Evaluating the target density, if its support is Lk
X̄
, typically involves verifying l
 2 Lk

X̄
or, equivalently,

verifying that uð�; l
Þ is regular on X̄ . This is a difficult problem, and we do not know of any tractable
algorithm that does this without error.

Various imperfect checks of regularity appear in the literature. Gallant (1981) proposes a simple algorithm
for checking convexity or concavity, but the conditions it verifies are sufficient but not necessary. Gallant and
Golub (1984) check quasi-concavity by searching for a minimum of a function whose non-negativity is
necessary and sufficient for quasi-concavity, but there is no guarantee that the minimization procedure finds a
global minimum.

All the basis functions of the Müntz–Szasz expansion are regular, so there is an ease to verify sufficient
condition for regularity: non-negativity of all coefficients. However, the condition in not necessary. In fact, it
imposes substitutability on all inputs. Terrell (1996) uses simulations to show that even when inputs are
substitutes, much flexibility is lost. See also Koop et al. (1994) on this point.

To check the regularity of uð�; l
Þ, we run a battery of tests verifying necessary conditions. So although we
will never attribute irregularity to a regular function, we cannot guarantee that we will detect the irregularity
of an irregular function.

We note that any proposal l
 satisfies Vl
X0 by construction, so it already survives all of the regularity
testing implied by this condition.

For all i 2 f1; . . . ; ng, the expressions

gðziÞ � ðxi þ xiÞ
qui

qxi

ðxi; l
ðiÞ
Þ and hðziÞ � ðxi þ xiÞ

2 q
2ui

qx2
i

ðxi; l
ðiÞ
Þ

are polynomials of order k � 1 in zi � fiðxÞ. We find, numerically if necessary, all the roots of h and verify that
none of these roots are in ½zlo

i ; z
hi
i �, that hð0Þo0, and that gðzhi

i Þ40.
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We then verify that the gradient of u at x̄ is positive. Finally, we search for the maximum value of the largest
eigenvalue of the Hessian of u over X̄ , using a simplex algorithm, and verify that the greatest value found is
negative.
4.4. A second proposal

The second proposal consists of three steps. First we draw a random good i
 from the discrete uniform
distribution on f1; . . . ; ng. Then we find pmin, the value of the multiplier p such that ðlð1Þ; . . . ; lði


�1Þ;
plði


Þ; lði

þ1Þ; . . . ; lðnÞ; l�Þ is on the boundary of the cone VlX0. Finally, we draw p
 from a log-normal

distribution truncated to ½pmin;1Þ and construct the proposal

l
 ¼ ðlð1Þ; . . . ; lði

�1Þ;p
lði


Þ; lði

þ1Þ; . . . ; lðnÞ; l�Þ. (14)

The advantage of the second proposal is that the chain can move quickly out of the tight corners of Lk
X̄
.

We compute pmin as the smallest positive value of p for which V ðlþ ðp� 1ÞwÞX0, where
w ¼ ð0; . . . ; 0; lðiÞ; 0; . . . ; 0Þ. That is, we choose

pmin ¼ max
j2f1;...;Nvg

1�
ðVlÞj
ðVwÞj

( )
.

We point out that there is no pmax. That is, there is no p41 such that V ðlþ ðp� 1ÞwÞ�0. This is because w

and l are both in Lk
X̄
and Lk

X̄
� fl : VlX0g.

Once we have pmin, we draw p
 from a log-normal distribution truncated to ½pmin;1Þ. For the simulations
described in this paper, we draw p
 such that log p
 has mean zero and standard deviation s � 0:25 before
truncation.

We then construct l
 as in Eq. (14). We accept with probability

min 1;
f ðl
Þ
f ðlÞ
� ðp
Þk�2 � p
 �

1� Fððlog pminÞ=sÞ
1� Fððlog pmin � log p
Þ=sÞ

� �
.

The factor ðp
Þk�2 is due to the fact that this is a radial draw in a ðk � 1Þ-dimensional subspace of Lk
X̄
: the

volume of the differential element increases as ðp
Þk�2. For more rigor on this point, and for more information
on radial draws in radial co-ordinate systems, see Bauwens et al. (2004). The factor p
 comes from the
Jacobian of the exponential transformation of the truncated Gaussian draw log p
.
4.5. A third proposal

The third proposal is similar to the second proposal, except that we multiply both lði

Þ and l� by the same

random multiplier. First we draw a random good i
 from the discrete uniform distribution on f1; . . . ; ng. Then
we find pmax, the value of the multiplier p such that

ðlð1Þ; . . . ; lði

�1Þ;plði


Þ; lði

þ1Þ; . . . ; lðnÞ;pl�Þ

is on the boundary of the cone VlX0. Finally, we draw p
 from a log-normal distribution truncated to
½0;pmax� and construct the proposal

l
 ¼ ðlð1Þ; . . . ; lði

�1Þ;p
lði


Þ; lði

þ1Þ; . . . ; lðnÞ;p
l�Þ. (15)

The advantage of the third proposal is that the chain can move quickly into the tight corners of Lk
X̄
.

We compute pmax as the largest value of p for which V ðlþ ðp� 1ÞwÞX0, where w ¼ ð0; . . . ; 0; lðiÞ;
0; . . . ; 0; l�Þ. That is, we choose

pmax ¼ min
j2f1;...;Nvg

1�
ðVlÞj
ðVwÞj

( )
.
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Regularity of the ui, iai
 guarantees regularity of uð�; l� wÞ. Since, in addition, Lk
X̄

is a cone, there is no
p 2 ð0; 1Þ such that V ðlþ ðp� 1ÞwÞ�0.

Once we have pmax, we draw p
 from a log-normal distribution truncated to ½0;pmax�. For the simu-
lations described in this paper, log p
 is normal with mean 0 and standard deviation s � 0:25, before
truncation.

We then construct l
 as in Eq. (15) and accept with probability

min 1;
f ðl
Þ
f ðlÞ
� ðp
Þk

n
�ðn�1Þðk�1Þ�2

� p
 �
Fððlog pmaxÞ=sÞ

Fððlog pmax � log p
Þ=sÞ

� �
,

where the exponent kn
� ðn� 1Þðk � 1Þ � 2 is one less than the dimension of ðlði


Þ; l�Þ.
5. An empirical application

We present a consumer demand application to illustrate our methods. In theory, utility or
indirect utility functions represent choices exactly. Following common practice, we include a random
component, or disturbance, to choices in order to obtain a data density and do likelihood-based
statistical inference. However, we take an unconventional approach to the specification of the random
disturbance.

Usually a measurement error approach is taken, whereby an error distribution, unrelated to preference,
accounts for discrepancies between observed choices and choices which maximize utility. In contrast, we use a
model for observed choices where distributions over choices are given by the utility function itself. Specifically,
if u:X ! R is the utility function over the universe X of choices, then the distribution of observed choices is
proportional to expðuðxÞÞ on the frontier of the set of feasible choices. Theil (1974) and McCausland (2004)
give very different theoretical underpinnings. There are several advantages of this approach. First, it is
theoretically grounded. In usual practice, distributions of disturbances are given without theoretical
justification. Second, the specification is parsimonious: a single function describes not only how choices
broadly respond to changes in prices and income, but also the distribution of demand on any given budget.
Third, the fit of an observed choice is measured by the relative desirability of the choice and its feasible
alternatives, rather than by some measure on the choice set. Varian (1990), in a paper on goodness-of-fit
measures, argues for preferring the former to the latter. Finally, the theories of Theil (1974) and McCausland
(2004) do not rule out violations of the axioms of revealed preference. In practice, such violations are
sometimes observed. The theories are more forgiving than standard consumer theory, without being
undisciplined.

We analyze data from the Harbaugh et al. (2001) ‘‘GARP for Kids’’ experiment, undertaken in a study of
the development of rational behavior. Subjects are 31 second grade students, 42 sixth grade students and 55
undergraduates. There are two goods, chips and juice, in indivisible packages. There are no prices and income
as such: subjects are offered a budget of choices directly, and the budgets do not include off-frontier bundles.
Fig. 2 illustrates the eleven different budgets.

The experiment has the following features.
1.
 Choices are individual, rather than aggregate, so consumer theory (and in particular the theory of random
consumer demand in McCausland (2004)) applies.
2.
 Consumers select bundles from several different budgets, in the knowledge that after all decisions are
made, exactly one of the budgets will be selected at random, and the consumer will be given their choice
from only that budget. We can thus plausibly consider choices as being simultaneous or static, rather than
dynamic.
3.
 Consumers have the opportunity to go back and change earlier choices, before a budget is selected at
random. This mitigates the problem of learning during the experiment.
4.
 Choices are recorded in a laboratory. We can be fairly confident that measurement error is not a problem.

5.
 The number of goods, the coarseness of the indivisibilities, and prices and income are such that the number

of possible choices is small. The likelihood function is therefore easily computed.
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Fig. 2. Budgets for the ‘‘GARP for Kids’’ experiment.
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Using the theory of Theil (1974) or that of McCausland (2004), we obtain the following distribution for the
tth choice xt:

Prðxt ¼ xÞ ¼

exp uðxÞP
y2Bt

exp uðyÞ
; xt 2 Bt;

0 otherwise;

8><
>: (16)

where Bt is the set of choices on the frontier of the tth choice set, which in this experiment is the choice set
itself. We assume that the choices xt are independent and appeal to points 2 and 3 above to justify this
assumption.

A few comments on the applicability of the theory by Theil (1974) are in order, as its relevance might not be
immediately clear to the reader consulting it. Theil assumes that the choice set is Rn for some n, and uses a
quadratic approximation for u that leads to multivariate normal choice distributions. We point out that the
main result of Theil (1974) also holds for finite choice sets, and that we have no need for the approximation: if
we use u directly, we obtain choice distributions given by (16).

5.1. Prior specification

The following choices define the prior distribution over the constellation index k and the vector l of
coefficients. The restricted consumption set is X̄ ¼ ½0; 12�2, which is compact and contains all eleven budgets.
The constants defining the transformation f are x
 ¼ ð1:0; 1:0Þ and x ¼ ð0:1; 0:1Þ. Thus f is given by

fðx1;x2Þ ¼ log
x1 þ x1
x
1 þ x1

� �
; log

x2 þ x2
x
2 þ x2

� �� �

¼ log
x1 þ 0:1

1:1

� �
; log

x2 þ 0:1

1:1

� �� �
.
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The multi-index constellations are rectangular lattices given by

Ik � fi 2 Nn
0: ia0 and 0piipk � 1 for i ¼ 1; . . . ; ng.

The multi-indices in I3, for example, are (0,1), (0,2), (1,0), (1,1) (1,2), (2,0), (2,1) and (2,2), corresponding to
the basis functions f2, f

2
2, f1, f1f2, f1f

2
2, f

2
1, f

2
1f2, and f2

1f
2
2.

The prior on k, the constellation index, is given by pk ¼ 2�ðk�1Þ for kX2. Thus we have three terms with
probability 1

2
, eight with probability 1

4
, 15 with probability 1

8
, and so on. The conditional prior density of l given

k has the form given in Eq. (12), where v is the vector such that ðDu1 þ Du2Þ=2 ¼ v0l, g is the gamma density
with shape parameter 4 and scale parameter 50, and h is the factor defined in (13), with b1 ¼ b2 ¼ 0:5,
d ¼ 0:001 and p ¼ k � 1.

5.2. Results

We present results for the ‘‘GARP for Kids’’ experiment. The objective here is not to study the development
of rational behavior in children, and so we report results only for the benchmark undergraduate subjects.

Table 1 shows conditional posterior probabilities for k given k 2 f2; 3; 4; 5g, for subjects 1074 through 1103, the
first 30 of 55. We use the method of Newton and Raftery (1994) to compute f ðx1; . . . ;x11jkÞ for each value of k.

Table 2 lists the log marginal likelihoods for all 55 subjects, given k 2 f2; 3; 4; 5g. They are in row major
order, so the first row gives the marginal likelihoods for subjects 1074 through 1078. Here, the marginal
likelihood is the marginal probability the model, including prior, assigns to the sequence of observed choices
that a subject makes. Standard errors for the numerical approximation of the log marginal likelihoods
Table 1

Posterior probabilities of k for the first 30 Subjects in the ‘‘GARP for Kids’’ experiment

Subject k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 5

1074 0.268031 0.407503 0.219064 0.105402

1075 0.345172 0.324044 0.184888 0.145895

1076 0.258968 0.462476 0.203739 0.074816

1077 0.967457 0.032059 0.000479 0.000005

1078 0.968034 0.031557 0.000405 0.000004

1079 0.198167 0.339118 0.300826 0.161889

1080 0.025543 0.821864 0.147249 0.005344

1081 0.233941 0.318601 0.266747 0.180711

1082 0.359153 0.390829 0.172782 0.077236

1083 0.309870 0.333014 0.223047 0.134069

1084 0.363238 0.184935 0.419443 0.032384

1085 0.966052 0.033497 0.000446 0.000005

1086 0.125813 0.624758 0.222555 0.026874

1087 0.817362 0.100623 0.075123 0.006892

1088 0.414538 0.250175 0.197775 0.137512

1089 0.415736 0.303844 0.176036 0.104384

1090 0.072000 0.025861 0.900104 0.002035

1091 0.632163 0.222689 0.105932 0.039216

1092 0.968132 0.031479 0.000385 0.000004

1093 0.257544 0.405650 0.222257 0.114550

1094 0.269312 0.462051 0.203084 0.065554

1095 0.967018 0.032522 0.000457 0.000003

1096 0.101630 0.505159 0.335330 0.057882

1097 0.265254 0.415457 0.226562 0.092727

1098 0.371295 0.358028 0.181920 0.088757

1099 0.894937 0.088172 0.016743 0.000148

1100 0.118235 0.306723 0.319137 0.255905

1101 0.970699 0.028890 0.000407 0.000004

1102 0.967782 0.031750 0.000465 0.000004

1103 0.427316 0.360936 0.129459 0.082289
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Table 2

Log marginal likelihoods for all subjects in the ‘‘GARP for Kids’’ experiment, in row major order

�7.351133 �4.608758 �9.940656 �4.197768 �4.183579

�14.935639 �6.301195 �15.442465 �8.161736 �16.676400

�16.713183 �4.233398 �17.822427 �10.557720 �30.356065

�22.978277 �24.813786 �23.485596 �4.202415 �7.330709

�9.970015 �4.236868 �16.950571 �7.352623 �8.396829

�10.407859 �12.575744 �4.160754 �4.224852 �8.894845

�8.242575 �21.439450 �11.572254 �12.535711 �18.998176

�7.359645 �7.946763 �14.665421 �18.625966 �4.218446

�9.468318 �9.972209 �21.650330 �8.078603 �13.919956

�22.521666 �15.678075 �18.931139 �7.500323 �21.632655

�20.188184 �4.211171 �16.273644 �7.366309 �22.680512
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Fig. 3. Prior and posterior scattergraph, for subject 1105, of the modal expenditure share of good one versus w1=w2, where w1 and w2 are

income-normalized prices adding to 1.
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reported in Table 2 are all less than 0:15. The average log marginal likelihood is �12:49. Subject 1088 (row 3,
column 5) always spent all his income on the more expensive good. This exuberant irrationality earned him a
log marginal likelihood of �30:36, by far the lowest.
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Table 3

Counts of numbers of GARP violations

Number of violations Experimental subjects All sequences

0 36 108,846

1 0 0

2 1 140,788

3 5 171,718

4 0 272,978

5 7 438,074

6 1 646,288

7 0 928,790

8 0 1,567,246

9 2 2,081,452

10 1 2,555,030

11 2 3,184,790

Total 55 12,096,000

W.J. McCausland / Journal of Econometrics 142 (2008) 484–507 503
Subject 1105 (row 7, column 2) always spent his income on the cheaper good, and chose equal quantities
of the goods when their prices were equal. Although rational, these choices require very specific abrupt
changes in expenditure shares in response to small changes in relative prices. Only a small set of l account
for this behavior, and the marginal likelihood is low �21:43. However, we can see in Fig. 3 that the
posterior distribution puts high probability on these abrupt changes. Both panels of Fig. 3 show 20 curves.
Each curve gives the mode of the expenditure share of good one as a function of the ratio w1=w2 of income-
normalized prices w1 and w2, adding to one. The first panel shows curves for 20 draws of the utility function
from its conditional prior distribution given k ¼ 4. The second panel does the same for the conditional
posterior distribution given k ¼ 4 and the observed choices of Subject 1105. The curves with the most abrupt
changes tend to be associated with high amplitude utility functions, for which the expenditure share
distribution is quite tight. The smoother curves tend to correspond to more diffuse expenditure share
distributions.

To put the log marginal likelihoods in perspective, we consider the average log marginal likelihood arising
from various models. The model assigning equal probability to all possible sequences of eleven choices implies
a log marginal likelihood of �16:31 for every subject. A model which correctly and with certainty predicts
the behavior of all subjects on all budgets implies a log marginal likelihood of zero for every subject. Any
model that assigns probability zero to every sequence featuring at least one violation of the generalized axiom
of revealed preference (GARP) gives a log marginal likelihood of negative infinity to the sequences of the 19
out of 55 subjects who violated the GARP, and therefore an average log marginal likelihood of negative
infinity.

We use the data in Table 3 to derive a maximum log marginal likelihood of �13:36 over all models assigning
equal probabilities to all sequences with the same number of GARP violations. The second column gives, for
the number of GARP violations in the first column, the number of subjects having that number of violations.
The third column gives the total number of distinct sequences of eleven choices having that number of
violations.

6. Conclusions

We have pointed out that instead of approximating a function u on a compact restricted domain X̄ , we can
approximate u � f�1 on fðX̄ Þ, where f is a function one can choose to be non-decreasing and concave,
facilitating the approximation of non-decreasing concave functions. With modest restrictions on f, we can
simultaneously approximate the function, its gradient and Hessian. We apply this idea using basis functions
that are polynomials, but we note that we could easily do the same with the sinusoidal basis functions of the
Fourier flexible form or the basis functions of the Müntz–Szasz expansion.
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We have put considerable emphasis on prior elicitation, to which we believe the literature has not paid
sufficient attention. We have described an approach to prior elicitation that puts more emphasis on
economically relevant quantities than on the parameters themselves. We have shown that there are tight
corners of the parameter space which, despite their low volume, may be quite plausible in many applications.
We have shown that by concentrating prior probability in these corners, we can obtain more diffuse prior
distributions over economically relevant quantities such as marginal rates of substitution and ratios of
quantities demanded.

We believe this is relevant for applied economic research. Practitioners should be aware that flat priors on
the parameter space can imply quite informative priors about economically relevant quantities. We
recommend prior simulation to ensure that these quantities have reasonable prior distributions. We have
provided an example of how one can modify a prior if it implies too informative a distribution for these
quantities.

We have noted that the tight corners of the parameter space also pose a problem for prior and posterior
simulation and that this problem is aggravated by the concentration of prior probability within them. We have
introduced Metropolis–Hastings chains that are able to move quickly in and out of these tight corners, and
thereby efficiently sample the prior and posterior distributions.

We have demonstrated the use of these prior distributions and simulation methods for the analysis of data
from a consumer experiment.
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Appendix A. On the boundedness of cone truncations

This appendix is on the boundedness of a truncation of the cone Lk
X̄
defined in Eq. (3). This boundedness is

relevant for the construction of proper prior distributions on Lk
X̄
as described in Section 3.2.

Result A.1. The set fl 2 Lk
X̄
: uðx̄; lÞp1g is bounded.

Proof. We first establish bounds on the values of uðx; lÞ on the subset ½x
1; x̄1� � � � � � ½x


n; x̄n� of the restricted

domain X̄ .

Claim A.1. For every x 2 ½x
1; x̄1� � � � � � ½x


n; x̄n� and every l 2 fl 2 Lk

X̄
: uðx̄; lÞp1g,

0puðx; lÞp1.

Proof. The claim follows directly from the monotonicity of uð�; lÞ, the fact that uðx
; lÞ ¼ 0, and the fact that
uðx̄; lÞp1. &

We now bound fl 2 Lk
X̄
: uðx̄; lÞp1g by enclosing it in a hyper-parallelogram defined by

fl 2 RjIkj: 0pClpð1; 1; . . . ; 1Þg, where C is a non-singular matrix. The non-singularity of C guarantees that
the hyper-parallelogram is bounded, and thus that fl 2 Lk

X̄
: uðx̄; lÞp1g is bounded.

Let J ¼ jIkj, and order the multi-indices i 2 Ik as ið1Þ; . . . ; iðJÞ. Choose vector q ¼ ðq1; . . . ; qnÞ such that for
every i 2 f1; . . . ; ng,
1.
 there exist positive integers mN and mD such that qi ¼ pmN

2i =pmD

2i�1, where pi is the ith prime number, and

2.
 ½fið

x
þx̄
2
Þ=fiðx̄Þ�

1=Jpqip1.

A simple modification of the proof in Rudin (1976) of the denseness of the rational numbers in the reals shows
that we can do this. The inequalities x
oðx
 þ x̄Þ=2ox̄ ensure that we are taking the Jth root of a positive real
number strictly less than one.
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Now define, for all j 2 f1; . . . ; Jg,

zj � ðq
j
1f1ðx̄Þ; . . . ; q

j
nfnðx̄ÞÞ; xj � f�1ðzjÞ

and

C �

zi
ð1Þ

1 � � � zi
ðJÞ

1

..

. . .
. ..

.

zi
ð1Þ

J � � � zi
ðJÞ

J

2
6664

3
7775.

For all l 2 Lk
X̄
,

Cl ¼ ½uðx1; lÞ; . . . ; uðxJ ; lÞ�0 ¼ ½uðf
�1
ðz1Þ; lÞ; . . . ; uðf

�1
ðzJÞ; lÞ�0

and for all j 2 f1; . . . ; Jg, xj ¼ f�1ðzjÞ 2 ½x


1; x̄1� � � � � � ½x



n; x̄n�. Claim A.1 gives us ð0; . . . ; 0Þ0pClpð1; . . . ; 1Þ0.

We now show that C is non-singular.

Claim A.2. C is non-singular.

Proof. C can be written as

ðqið1Þ Þ
1
½fðx̄Þ�i

ð1Þ

� � � ðqiðJÞ Þ
1
½fðx̄Þ�i

ðJÞ

..

. . .
. ..

.

ðqið1Þ Þ
J
½fðx̄Þ�i

ð1Þ

� � � ðqiðJÞ Þ
J
½fðx̄Þ�i

ðJÞ

2
6664

3
7775 ¼

ðqið1Þ Þ
1
� � � ðqiðJÞ Þ

1

..

. . .
. ..

.

ðqið1Þ Þ
J
� � � ðqiðJÞ Þ

J

2
664

3
775 � diagð½fðx̄Þ�ið1Þ ; . . . ; ½fðx̄Þ�iðJÞ Þ.

We will show that both these factors are non-singular, which will then imply that C is non-singular. The first
factor is a Vandermonde matrix, and to establish its non-singularity, it suffices to show that for all
j; l 2 f1; . . . ; Jg, jal ) qiðjÞaqiðlÞ . This follows from the fact that there is a unique representation of any
rational number as the ratio of two integers with no common factors, and unique prime factorizations of the
two integers. The second factor is a diagonal matrix whose elements are non-zero, and so it is also non-
singular. Since the two factors are non-singular, so is C. &

Appendix B. Sensitivity analysis for prior simulations

We made the case in Section 3 that a uniform prior over basis function coefficients implies priors over
economically relevant features of the regular function that are quite informative. We chose particular values of
the fixed parameters of the functional form and focused on the value of

logðquðx; lÞ=qx1Þ � logðquðx; lÞ=qx2Þ (17)

at the single point x
.
In this appendix, we give the results of a sensitivity analysis that shows how the distribution of the quantity

(17) depends on the point x at which we evaluate (17) and values of the fixed parameters.
Table 4 shows estimates of the prior means and standard deviations of the value of (17) for seven different

values of ðx1;x2Þ. The base case corresponds to the same choice of fixed parameters as in Section 3. That is,
n ¼ 2, k ¼ 4, x̄ ¼ ð1:0; 1:0Þ, x ¼ ð0:01; 0:01Þ and x
 ¼ ð0:1; 0:1Þ.

The other rows illustrate the effect of various changes to the fixed parameters. All changes are relative to the
base case. In the second and third rows, we decrease and increase x
 for fixed x. In the fourth and fifth rows,
we multiply and divide the xi by 4, respectively, adjusting the value of x
i to maintain their equality to the
geometric mean of xi and x̄i. In the fifth and sixth rows, the number of basis functions is first decreased to 8
(corresponding to k ¼ 3) then increased to 24 (corresponding to k ¼ 5).

The final row shows what happens when the number of goods increases. We take x ¼ ð0:01; 0:01; 0:01Þ, x
 ¼

ð0:1; 0:1; 0:1Þ and x̄ ¼ ð1:0; 1:0; 1:0Þ. When evaluating (17) for the various values of ðx1;x2Þ we take x3 ¼ x
3.
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Table 4

Prior means and Standard deviations of logðquðx; lÞ=qx1Þ � logðquðx; lÞ=qx2Þ, for various values of ðx1; x2Þ and fixed parameters

Case ð0; 0Þ ð1
4
; 1
4
Þ ð1

2
; 1
2
Þ ð1; 1Þ ð1

2
; 0Þ ð1; 0Þ ð3

4
; 1
4
Þ

Base case 0 0 0 0 �0.36 �0.22 0.24

(0.84) (0.75) (0.81) (1.08) (0.95) (1.11) (0.86)

x
1 ¼ x
2 ¼ 0:025 0 0 0 0 �0.49 �0.37 0.21

(0.75) (0.72) (0.83) (1.19) (0.93) (1.10) (0.87)

x
1 ¼ x
2 ¼ 0:4 0 0 0 0 �0.20 �0.02 0.28

(0.88) (0.70) (0.73) (0.92) (0.89) (1.03) (0.79)

x1 ¼ x2 ¼ 0:04 0 0 0 0 �0.41 �0.35 0.09

x
1 ¼ x
2 ¼ 0:2 (0.79) (0.69) (0.74) (1.09) (0.87) (1.11) (0.82)

x1 ¼ x2 ¼ 0:0025 0 0 0 0 �0.30 �0.15 0.28

x
1 ¼ x
2 ¼ 0:05 (0.88) (0.80) (0.87) (1.09) (1.02) (1.14) (0.89)

k ¼ 3 0 0 0 0 �0.24 �0.42 �0.17

(0.89) (0.78) (0.86) (1.16) (1.00) (1.22) (0.90)

k ¼ 5 0 0 0 0 �0.40 �0.66 0.03

(0.84) (0.62) (0.62) (1.20) (0.82) (1.11) (0.69)

n ¼ 3 0 0 0 0 �0.32 �0.19 0.20

(0.55) (0.50) (0.52) (0.69) (0.65) (0.77) (0.58)

W.J. McCausland / Journal of Econometrics 142 (2008) 484–507506
Means that we know are zero because of symmetry are given as 0. All other quantities are obtained by prior
simulation, as described in Section 4. Numerical standard errors for the means in the last row are all less than
0.025. Numerical standard errors for all other means are less than 0:015.
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