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Abstract

We propose an alternate parameterization of stationary regular finite-state Markov chains, and a

decomposition of the parameter into time reversible and time irreversible parts. We demonstrate

some useful properties of the decomposition, and propose an index for a certain type of time

irreversibility, applicable to chains whose states are naturally ordered. Two empirical examples

illustrate the use of the proposed parameter, decomposition and index. One, on gasoline price mark-

ups, involves observed states. The other, on U.S. investment growth, features latent states.
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1. Introduction

Intuitively, a random process is time reversible if the statistical properties of the process
are the same as those of the same series running backwards through time. For discrete-time
processes, a formal definition is the following.

Definition 1.1. A discrete-time random process fxtg is time reversible if for every positive
integer K and all integers t and t, the distributions of ðxt;xtþ1; . . . ; xtþK Þ and
ðxt�t;xt�t�1; . . . ;xt�t�K Þ are identical.
see front matter r 2006 Elsevier B.V. All rights reserved.
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Several papers in economics find evidence of time irreversibility in observed
time series. In the large literature on business cycle fluctuations, many authors
document a tendency for downswings to be faster than upswings, an example of
what is known in the literature as ‘‘steepness’’. Ramsey and Rothman (1996) survey
much of this literature, and find evidence of time irreversibility in many macro-
economic variables. Chen and Kuan (2001) find that stock index returns are time
irreversible, and Fong (2003) finds stock trading volume to be time irreversible.
Noel (2003) analyzes retail gasoline markets in 19 Canadian cities and finds strong
evidence, in some but not all markets, of cycles where prices tend to rise sharply and
decline gradually.
Although time reversibility is quite restrictive, there are many examples of commonly

used statistical models for discrete time processes that impose it. Time reversible processes
include exchangeable processes, univariate stationary Gaussian processes and time
discretized stationary univariate diffusions. The last two are often used as models for
macroeconomic variables and asset returns, respectively.
Allowing time irreversibility is not only important for constructing more realistic

statistical models. Time reversibility may be of economic interest in itself. Maskin and
Tirole (1988) discuss a dynamic game in which two firms competing in an output market
choose prices in each period. One set of equilibria features what the authors call
‘‘Edgeworth cycles’’, in which large price jumps are followed by more gradual falls in price
as the two firms repeatedly undercut one another. Noel (2003) explicitly draws the
connection between cycles in gasoline prices and Edgeworth cycles, and shows that the
degree of market penetration of independent gasoline retailers helps predict the presence or
absence of cycles in a market, in a way that is consistent with an extension by Eckert (2003)
of the theory of Maskin and Tirole.
In markets where participants simultaneously observe noisy value-relevant signals and

learn about the signal through time, price volatility and trading volume may feature rapid
growth and slow decay. Sims (2003) discusses information processing capacity constraints
and shows how these can generate non-instantaneous reactions to information. Peng and
Xiong (2003) propose a model with these constraints that features not only the clustering
and long memory of volatility (their objective) but also cycles of volatility with sharp
increases and gradual decreases.
Economic agents often face adjustment costs, which can lead to time irreversible

decision processes. When inflation is positive, the real prices of goods produced by firms
with menu costs rise abruptly and fall gently. Capital investment decisions of firms may be
more easily made than reversed.
Where asset price bubbles occur, prices in excess of risk-adjusted expected discounted

dividends expand slowly and pop suddenly.
Tests for time reversibility have been proposed by various authors. Ramsey and

Rothman (1996) introduce a time domain test and Hinich and Rothman (1998) propose a
frequency domain test. Robinson (1991) describes an entropy based test that can be used to
test for time reversibility. Chen et al. (2000) introduce a class of tests based on
characteristic functions that do not require the existence of any moments.
In this paper, we are more concerned with characterizing the time irreversibility of

processes rather than testing for their time reversibility. We focus on stationary regular
finite-state Markov chains. These chains may be directly observed, but often they are
incorporated as latent processes in more elaborate models, known as hidden Markov
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models. There has been much recent interest in these models, and computational advances
for their analysis. See, for example, Scott (2002).

Stationary regular finite-state Markov chains can be reversible or not. When they are
parameterized as described in Section 2, time reversibility is easy to check and the degree
and nature of time irreversibility is transparent. To facilitate the characterization of time
irreversibility, we introduce, in Section 3, a decomposition of the parameter into what we
will call its time reversible and time irreversible parts. We offer graphical representations of
the parameter and its decomposition, which promote intuition and help interpret the
nature of a chain’s time irreversibility. Many chains have naturally ordered states, and for
such chains we propose an index for a certain type of time irreversibility.

When the number of states is greater than two, imposition of time reversibility amounts
to a reduction in the dimension of the parameter space. This parsimony may be useful in
some applications. Incorporating latent Markov chains is an easy way of generating
models that can feature time reversibility or not, depending on values of the parameters.

Section 4 presents results from two empirical applications illustrating the use of the
proposed parameter, decomposition and index. The first, on gasoline price mark-ups,
involves directly observed states. The second, on U.S. investment data, features latent
states. The results suggest that the proposed time irreversibility index for chains with
naturally ordered states is an empirically interesting measure of time irreversibility.

Section 5 concludes and identifies directions for further research.

2. A new parameterization

A stationary regular finite-state Markov chain fstg is usually parameterized by its Markov
transition matrix P, which gives the conditional probabilities Pr½st ¼ jjst�1 ¼ i�. In this
section, we first review some results on stationary regular finite-state Markov chains. We then
introduce an alternate parameterization of these chains by the matrix P of joint probabilities
Pr½st�1 ¼ i; st ¼ j�. Finally, we point out some of the advantages of this parameterization.

2.1. A conventional parameterization

Let fstg be a Markov chain with finite state space f1; . . . ;mg. Let P be its m�m

transition matrix. That is, for all i; j 2 f1; . . . ;mg,

Pij ¼ Pr½st ¼ jjst�1 ¼ i�. (1)

We review the following important and well known results. See Iosifescu (1980), and
especially Theorem 1.9, Proposition 4.1 and Theorems 4.2 and 4.4.

1. fstg is regular
1 if and only if P is regular.2

2. If fstg is regular, then
(a)
1A
2A
3A

PijX

term
there exists a unique 1�m row-stochastic3 vector p, which we will call the stationary

distribution of fstg, such that pP ¼ p,
Markov chain is regular if it is irreducible and aperiodic.

Markov transition matrix P is regular if there exists an integer n40 such that for all states i and j, ðPnÞij40.

real m� n matrix (or vector) P is row-stochastic if for all i 2 f1; . . . ;mg and j 2 f1; . . . ; ng,
Pn

k¼1 Pik ¼ 1 and

0. The simpler term ‘‘stochastic’’ is often used, but ‘‘row-stochastic’’ is also used and helps to differentiate the

from a new one (‘‘matrix-stochastic’’) that I introduce later.
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(b)
4T
p40, and

(c)
 if fstg is stationary, then for all i 2 f1; . . . ;mg and all t, pi ¼ Pr½st ¼ i�.
The results imply that a stationary regular finite-state Markov chain is fully described by
its Markov transition matrix, and that the following parameter set indexes the stationary
regular m-state Markov chains.

P � fP 2 Rm�m:P is row-stochastic and regularg. (2)

2.2. An alternate parameterization

For the purposes of studying time reversibility and time irreversibility of stationary
regular finite-state Markov chains, it is convenient to consider an alternate parameteriza-
tion, one which gives joint state probabilities rather than conditional state probabilities.

Definition 2.1. Let fstg be a stationary regular finite-state Markov chain. Define the joint

probability matrix P of fstg as the m�m matrix such that for all i; j 2 f1; . . . ;mg,
Pij � Pr½st�1 ¼ i; st ¼ j�.

For any stationary regular finite-state Markov chain, the Markov transition matrix P,
the stationary distribution vector p and the joint probability matrix P are related by the
simple expression P ¼ DP, where D is the diagonal matrix with Dii ¼ pi, i ¼ 1; . . . ;m. We
can also invert D to write P ¼ D�1P. These claims follow immediately from the definition
of conditional probability and the fact that p40, a consequence of regularity. Stationarity
implies that row sums equal column sums and that both give the stationary distribution:
p ¼ i0P ¼ ðPiÞ0, where i is an m� 1 vector of ones.
We introduce three definitions that will be useful for describing the properties of P. Let

A be any real m�m matrix. The first definition is for matrices that specify valid joint
probability mass functions on f1; . . . ;mg2. We call A matrix-stochastic if for all
i; j 2 f1; . . . ;mg, AijX0 and

Xm

i¼1

Xm

j¼1

Aij ¼ 1. (3)

The concept of balance refers to the equality of row sums to column sums, which for
matrix-stochastic A means that the two marginal distributions are identical. We say that A

is balanced if for all i 2 f1; . . . ;mg,

Xm

j¼1

Aij ¼
Xm

j¼1

Aji. (4)

The third definition is closely related to the regularity of Markov chains and their Markov
transition matrices. We say that A is regular4 if there exists an integer n40 such that for all
i; j 2 f1; . . . ;mg, ðAnÞij40.
The following result states that P must satisfy these three properties.

Result 2.1. Let fstg be a stationary regular finite-state Markov chain, and P be its joint

probability matrix. Then P is matrix-stochastic, balanced and regular.
his is a generalization of the definition of regularity of Markov transition matrices to square matrices.
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Proof. That P is matrix stochastic follows from the definition of probability. Balance
follows from stationarity, as

Pn
j¼1 Pij and

Pn
j¼1Pji must both equal pi. Since the elements

of P are non-negative, regularity of P depends only on which of these elements are zero.
Since each element of P is zero if and only if the corresponding element of P is zero,
regularity of P implies regularity of P. &

The next result states that the three properties are exhaustive.

Result 2.2. Let m�m matrix P be matrix-stochastic, balanced and regular. Then P is the

joint probability matrix for a stationary regular m-state Markov chain.

Proof. Let p � ðPiÞ0 and D be the diagonal matrix with Dii ¼ pi, i ¼ 1; . . . ;m. Regularity
of P rules out a row or column of zeros, so p40 and D is non-singular. Now let
P � D�1P.

Matrix stochasticity of P implies row stochasticity of P and p. Regularity of P implies
regularity of P. Balance implies i0P ¼ p and so pP ¼ p. The stationary Markov chain with
Markov transition matrix P is therefore regular and has p as its stationary distribution and
P ¼ DP as its joint probability matrix. &

With the previous two theorems, we have established the following parameter set as an
alternative to P for stationary regular finite-state Markov chains:

P ¼ fP 2 Rm�m:P is matrix-stochastic, balanced and regularg. (5)

An important advantage of the P parameterization lies in the following result.

Result 2.3. Let fstg be a stationary regular finite-state Markov chain, and let P be its joint

probability matrix. Then fstg is time reversible if and only if P is symmetric.

A generalization of this result to richer state spaces is well known in the Markov chain
Monte Carlo literature. For a simple proof of the special case, see McCausland (2004a), a
working paper version of this article.

Symmetry of P is easy to check. Checking reversibility using only the Markov transition
matrix P is more difficult.

An added advantage of the P parameter over the P parameter is the transparency of
many other characteristics of a Markov chain. While calculating p from P involves solving
a system of equations, computing p from P is a matter of finding row (or column) sums, a
back-of-the-envelope calculation that one can do to a crude but useful approximation in
one’s head. Likewise, it is easier to compute P from P than P from P. We can compute the
Markov transition matrix for the time reversed chain as easily as P. The magnitude,
direction and nature of temporal asymmetries become easily discernible, as they mirror
asymmetries of the P matrix.

While garnering relevant information from a given value or distribution of P is easier,
providing a value or distribution for P is more difficult, since the condition that row sums
equal column sums is more difficult to observe that the condition that row sums equal one.
In a paper in preparation, we show how to elicit hierarchical prior distributions for P
directly.
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2.3. A graphical representation of P

An important objective of this research is to facilitate the characterization of the time
irreversibility of a process. To this end we propose a graphical representation of P to
promote intuition and to serve as an expositional tool. We construct a directed graph with
the same information as P. The graph has m vertices, labelled 1 through m, each
representing one of the states of the underlying Markov chain. For all vertices
i; j 2 f1; . . . ;mg, there is directed edge of weight Pij from i to j. We will call Pij the flow

from state i to state j, Pij þPji the total flow between states i and j,
Pm

k¼1 Pik the outflow

from state i and
Pm

k¼1 Pki the inflow to state i.
Fig. 1 shows a 3� 3 joint probability matrix and the corresponding graph. Line

thicknesses are proportional to the corresponding elements ofP. The balance condition on
P is equivalent to the property that the inflow to a state equals the outflow from it. Balance
is intimately related to stationarity, since the outflow from a state i gives the marginal
probability Pr½st�1 ¼ i� and the inflow to i gives the marginal probability Pr½st ¼ i�.
We have seen that reversibility of fstg is equivalent to the symmetry of P. This is

equivalent in turn to the property that for all states i and j, the flow from i to j is equal to
the flow from j to i. This condition is known as detailed balance.
For m ¼ 2, balance implies detailed balance or equivalently, symmetry of P. Thus, all

stationary regular two-state Markov chains are time reversible.

3. Time reversibility and a decomposition

In this section, we describe a decomposition of the joint probability matrix P. We
demonstrate several properties of the decomposition that are useful for testing for time
reversibility and for characterizing time irreversibility. Finally, we introduce an index for a
certain type of time irreversibility in applications where states have a natural order.

3.1. A decomposition

Any P 2 P can be decomposed as P ¼ X þ L, where

X � ðPþP0Þ=2 and L � ðP�P0Þ=2. (6)
1

2

3

0
1=Π
4

2
1
2

3
3
4

1
20

Fig. 1. A joint probability matrix P and a graphical representation.
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Anticipating future results, we will call X the time reversible part of P and L the time
irreversible part of P. The symbols X and L are chosen because the symmetry and
asymmetry of these letters resemble the symmetry and asymmetry of the matrices they
represent.

The first important result is that the time reversible part of a joint probability matrix is
the joint probability matrix for a time reversible stationary regular finite-state Markov
chain.

Result 3.1. Suppose P 2 P and let X ¼ ðPþP0Þ=2. Then X 2 P and X 0 ¼ X .

Proof. That X is matrix-stochastic and balanced is obvious. For all i; j 2 f1; . . . ;mg, X ijX0
and X ij40 whenever Pij40, so X must be regular. X 0 ¼ X is obvious. &

The next result summarizes properties that a joint probability matrixP and its reversible
part X have in common: the chains they govern have the same stationary distribution, the
same state persistence Pr½st ¼ ijst�1 ¼ i� ¼ Pii=pi in every state i, and the same total flow
Pij þPji between any states i and j.

Result 3.2. Suppose P 2 P and let X ¼ ðPþP0Þ=2 and L ¼ ðP�P0Þ=2. Let p be the

stationary distribution of the chain whose joint probability matrix is P. Let P and PX be the

Markov transition matrices associated with P and X. Then
1.
 pPX ¼ pP ¼ p,

2.
 for all i 2 f1; . . . ;mg, PX

ii ¼ Pii, and
3.
 X þ X 0 ¼ PþP0.
Proof. For all i 2 f1; . . . ;mg,
Pm

j¼1Pij ¼
Pm

j¼1 X ij ¼ pi, so p gives the stationary
distribution for both the P and the X chains, and therefore pPX ¼ pP ¼ p. In addition,
for all i 2 f1; . . . ;mg, Pii ¼ X ii and therefore Pii ¼ Pii=pi ¼ X ii=pi ¼ PX

ii . X þ X 0 ¼ Pþ
P0 is obvious. &

We now define the subset X of P of joint probability matrices for time reversible
stationary regular finite-state Markov chains.

X � fP 2 P:P is symmetricg. (7)

The decomposition P ¼ X þ L leads to two obvious but useful corollaries of Result 2.3.
Reversibility is equivalent to its joint probability matrix P being equal to its reversible part
(P ¼ X ) and equivalent to its irreversible part being zero (L ¼ 0).

The L matrix accounts for deviations from reversibility. The value Lij is the deviation of
Pij from X ij, signed such that a positive value represents flow from i to j in excess of X ij .
Unlike X and P, L is not a joint probability matrix. It satisfies three conditions, all easy to
verify. The first is the antisymmetry condition L0 ¼ �L. Thus, the flow in excess of X ij

from i to j has the same magnitude and opposite sign as the flow in excess of X ji ¼ X ij from
j to i, and there can be no excess flow from i to i. The second is that the row and column
sums of L are zero, a kind of balance. It means that the sum of all excess flows out of i must
be matched by excess flows into i. The third is that for all i and j, �X ijpLijpX ij, which
ensures that the elements of P are non-negative. We can think of X ij ¼ X ji as the capacity
of excess flow of the ‘‘pipe’’ between i and j.
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3.2. A graphical representation of X and L

To further facilitate the characterization of the time irreversibility of a chain, we offer
graphical representations for the components of our decomposition. Let X and L be the
time reversible and time irreversible parts of a joint probability matrixP. We can construct
an undirected graph with the same information as X. For all vertices i; j 2 f1; . . . ;mg, there
is an undirected edge of weight X ij ¼ X ji from i to j. The weight is the average of the flow
P from i to j and the flow Pji back from j to i. It is also the size of the bidirectional flow for
the reversible chain with joint probability matrix X. Fig. 2 shows the time reversible part X

of the joint probability matrix P of Fig. 1, and the corresponding graph. Line thicknesses
are proportional to the corresponding elements of X.
We can construct a directed graph with the same information as L. For all vertices

i; j 2 f1; . . . ;mg, there is an directed edge of weight jLijj ¼ jLjij between i and j. If Lij is
positive, the direction is from i to j; if negative, from j to i. Fig. 3 shows the time irreversible
part L of the joint probability matrix P of Fig. 1, and the corresponding graph. Line
thicknesses are proportional to the corresponding elements of L.
Recall that edges from i to j represent flows from i to j in excess of X ij . The condition

that row and column sums must equal zero, or more intuitively, that excess inflows equal
excess outflows, suggest an analogy with systems of fluids in pipes with no sources or sinks.
The graphical representations of L in Figs. 3 and 4 show at a glance how excess flows
circulate through the various states.
Suppose we have a stationary regular finite-state Markov chain with joint probability

matrix P. It is well known that the time reversed chain is also stationary, regular and
Markov. Let Pr be its joint probability matrix and let X r ¼ ðPr þP0rÞ=2 and
Lr ¼ ðPr �P0rÞ=2. It is easy to see that Pr ¼ P0, X r ¼ X and Lr ¼ L0 ¼ �L. The
graphical representation of the time reversed chain will have the same edges and weights as
that of the original chain, with all directions reversed.

3.3. An index of time reversibility

In many applications, including the two examples in this paper, states have a natural
order. We assume states are labelled in a manner consistent with this order. So, for
example, if states are the indices of histogram bins of gasoline price mark-ups, state m

represents the interval with the highest mark-ups and state 1 stands for the interval with
1

2

3

0
3=X

7

3
2
5

7
5
8

1
40

Fig. 2. Matrix X and a graphical representation.
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1

2

3

0
-1=L

1

1
0
-1

-1
1
0

1
40

Fig. 3. Matrix L and a graphical representation.

1 2 3 4 1 2 3 4

Fig. 4. Time irreversibility with and without zero total circulation.
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the lowest. In this section, we describe an index for a certain type of time irrever-
sibility, applicable to chains with ordered states. It is designed to capture the degree to
which state transitions to higher states tend to be smaller and more frequent than those to
lower states. The index can be negative, in which case jumps are larger and less frequent
than falls.

Recall the examples from the introduction. Positive values of the index describe
processes whose irreversibility is like that of economic growth series, where increases in
growth are more frequent and smaller than decreases. Negative values describe processes
like gasoline price mark-ups with Edgeworth cycles, where jumps in prices are less frequent
and larger than falls.

Consider, by way of example, the P matrix in Fig. 1. The sum of the elements above the
diagonal ( 8

20
) gives the probability of a jump to a higher state from one observation to the

next. The sum of the elements below the diagonal ( 7
20
), giving the probability of a fall, is

smaller. However, the conditional expectation of the size of a jump, given a jump, is

ðP12 þ 2P13 þP23Þ=ðP12 þP13 þP23Þ ¼
11
8
, (8)

while that of the size of a fall, given a fall, is

ðP21 þ 2P31 þP32Þ=ðP21 þP31 þP32Þ ¼
11
7
, (9)

which is larger.
Take an interior state i 2 f2; . . . ;m� 1g and consider the net outflow Ci �

P
j4i Lij from

state i to higher states. Balance implies that Ci is also the net inflow
P

joi � Lij to i from
lower states. Balance also implies that this flow must be offset by a net flow Ci from states
higher than i directly to states lower than i. We will call Ci the circulation through i and
C �

Pm�1
i¼2 Ci ¼

P
j4iLij the total circulation.
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Note that C is also related to the relative probabilities of moving to a higher or lower
state:

C ¼
X

j4i

Lij ¼
X

j4i

ðPij �PjiÞ=2 ¼ ðPr½st4st�1� � Pr½stost�1�Þ=2. (10)

For the L matrix in Fig. 3, corresponding to the P matrix in Fig. 1, we calculate the
circulation C2 through state 2 and the total circulation C to be L23 ¼

1
40
.

Clearly, time reversibility implies C ¼ 0, but the converse is not true for m43. Fig. 4
represents on the left a non-zero L matrix for which C ¼ 0. Negative circulation through
state 2 is offset by positive circulation through state 3. On the right is a representation of
an L matrix whose total circulation is positive: both interior states have positive
circulation.
We see that C is a useful index for a particular type of time irreversibility where

circulation through a state tends to be in the same direction across states. The results of the
next section suggest that C might be empirically relevant.
In many applications, states do not have an unambiguous natural order. In some cases,

several orders may apply. Take for example a Markov mixture of normals process in which
both mean and variance are state dependent. We can order latent states by mean, variance
or marginal probability. In such cases, it may be interesting to consider circulation
properties in terms of one or more of these orders. Even in applications with no natural
order, the order induced by the marginal probabilities of states may yield an interesting
index of circulation.
Other measures of departure from reversibility not relying on states having a order may

be useful. For example, we can take jLijj or jLijj=X ij as an index of irreversibility
attributable to the flows between states i and j. We might measure the degree of
irreversibility of the chain by aggregating either of these indices by, for example, summing
or taking the maximum.
4. Empirical examples

The first empirical example investigates the time irreversibility of gasoline price
mark-ups. We have 267 weekly observations of retail price rt and wholesale price
wt for gasoline from November 27, 1989 to September 25, 1994. rt is an average
for a sample of gasoline stations in Windsor, Ontario, Canada. wt is the price char-
ged for large scale purchases of unbranded gasoline at the terminal in Toronto, Ontario.
The data, collected by the government of Ontario, are the same as those used in
Eckert (2002).
We divide the mark-up rt=wt into six bins according to Table 1 and model the evolution

of the mark-up bin st as a stationary regular 6-state Markov chain.
We choose a prior on P with independent rows, each having a Dirichlet distribution. The

Dirichlet parameter associated with Pij is 2 if i ¼ j and 1 otherwise. We note that P is
regular with probability one. The chain is irreversible with probability one, but since the
density of P is invariant to state relabelling, the prior is neutral with respect to the direction
of cycles in the L matrix.
We use the BACC software, described in Geweke (1999) and McCausland (2004b), to

generate a posterior sample of 100,000 draws of P and then construct posterior samples for
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Table 2

Posterior mean and standard deviation of the elements of P, p and P in the gasoline mark-up example

P 0.4647 0.2048 0.1329 0.0660 0.0660 0.0656

0.0828 0.5092 0.0411 0.2647 0.0613 0.0409

0.0117 0.1811 0.5275 0.2329 0.0234 0.0234

0.0085 0.0173 0.2704 0.5948 0.0923 0.0168

0.0373 0.0768 0.1112 0.4794 0.2211 0.0741

0.0719 0.0735 0.0723 0.1416 0.2851 0.3556

0.1239 0.1010 0.0847 0.0619 0.0621 0.0616

0.0392 0.0719 0.0283 0.0630 0.0339 0.0281

0.0116 0.0413 0.0535 0.0453 0.0164 0.0162

0.0083 0.0121 0.0404 0.0446 0.0263 0.0118

0.0360 0.0511 0.0596 0.0947 0.0781 0.0496

0.0669 0.0680 0.0675 0.0893 0.1165 0.1232

p 0.0508 0.1567 0.2747 0.3848 0.0868 0.0462

0.0222 0.0322 0.0356 0.0408 0.0192 0.0181

P 0.0251 0.0099 0.0063 0.0031 0.0031 0.0032

0.0128 0.0812 0.0063 0.0406 0.0094 0.0063

0.0032 0.0491 0.1461 0.0636 0.0064 0.0063

0.0032 0.0066 0.1032 0.2300 0.0353 0.0064

0.0032 0.0066 0.0095 0.0412 0.0198 0.0064

0.0032 0.0033 0.0032 0.0063 0.0127 0.0176

0.0167 0.0058 0.0043 0.0030 0.0031 0.0032

0.0064 0.0257 0.0045 0.0096 0.0052 0.0043

0.0031 0.0102 0.0307 0.0132 0.0044 0.0044

0.0031 0.0046 0.0135 0.0379 0.0102 0.0044

0.0032 0.0046 0.0053 0.0107 0.0101 0.0047

0.0032 0.0033 0.0032 0.0043 0.0063 0.0121

Table 1

Mark-up bins

State Range

1 rt=wto1:0
2 1:0prt=wto1:1
3 1:1prt=wto1:2
4 1:2prt=wto1:3
5 1:3prt=wto1:4
6 1:4prt=wt
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p, P, X and L. Tables 2 and 3 show the posterior mean and standard deviation for each
element of the matrices P, p, P, X and L. Only the upper triangle of X and L are shown,
the elements below the diagonal being redundant (X ij ¼ X ji and Lij ¼ �LjiÞ.

Table 4 gives, for the circulation in states 2–5 and the total circulation, the posterior
mean and standard deviation, and the posterior probability that the circulation is
negative. Fig. 5 displays a histogram for the posterior sample of total circulation. There is
strong evidence of negative total circulation and negative circulation through state 3, and
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Table 3

Posterior mean and standard deviation of the elements of X and L in the gasoline mark-up example

X 0.0251 0.0114 0.0047 0.0032 0.0032 0.0032

0.0812 0.0277 0.0236 0.0080 0.0048

0.1461 0.0834 0.0080 0.0048

0.2300 0.0383 0.0063

0.0198 0.0096

0.0176

0.0167 0.0053 0.0029 0.0023 0.0024 0.0025

0.0257 0.0061 0.0058 0.0038 0.0030

0.0307 0.0121 0.0037 0.0029

0.0379 0.0094 0.0034

0.0101 0.0046

0.0121

L 0 �0.0015 0.0016 �0.0000 �0.0000 �0.0000

0 �0.0214 0.0170 0.0014 0.0015

0 �0.0198 �0.0016 0.0016

0 �0.0029 0.0001

0 �0.0031

0

0 0.0030 0.0024 0.0020 0.0020 0.0020

0 0.0050 0.0049 0.0031 0.0024

0 0.0056 0.0032 0.0025

0 0.0046 0.0027

0 0.0030

0

Table 4

Posterior moments for the circulation through individual states and for total circulation, in the gasoline mark-up

example

State Posterior Posterior standard Posterior probability

mean deviation of negative circulation

2 �0.0015 0.0030 0.6986

3 �0.0198 0.0051 1.0000

4 �0.0029 0.0048 0.7310

5 �0.0031 0.0030 0.8685

Total �0.0272 0.0091 0.9985
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some evidence of negative circulation through states 2, 4 and 5. Results not reported
suggest that the strong evidence in favor of negative total circulation is robust to
reasonable perturbations of the bin limits, and to the number of bins, as long as there are
at least four.
This evidence is consistent with previous observations that prices tend to rise sharply

and decline gradually. It also suggests that total circulation measures a type of time
reversibility that is empirically relevant.
The second empirical example investigates time irreversibility of investment growth in

the U.S.A. We have 205 quarterly observations, from the first quarter of 1947 to the first
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Fig. 5. Posterior histogram of total circulation for gasoline mark-up example.
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quarter of 2004, of real gross private domestic investment5 I t. We construct the series
gt � logðI t=I t�1Þ of investment growth. This is the same series used in Clements and
Krolzig (2003) in their investigation of business cycle asymmetries, updated to the first
quarter of 2004.

We use one of the models in Clements and Krolzig (2003), originally described in
Hamilton (1989), for gt. There is a latent stationary regular Markov state sequence fstg on
the state set f1; . . . ;mg, with transition matrix P. The process fgtg, conditional on fstg, is
given by

gt � mst
¼
Xp

i¼1

fiðgt�i � mst�1
Þ þ �t, (11)

�t� i.i.d. Nð0; h�1Þ. (12)

The quantities m � ðm1; . . . ;mmÞ, h, P and f � ðf1; . . . ;fpÞ are unknown parameters.
Following Clements and Krolzig, we set m ¼ 3 and p ¼ 4. We complete the model with a

prior on m, h, P and f where the parameters are independent. m has a truncated
multivariate normal distribution. The untruncated distribution has independent m2, m3 �
m2 and m2 � m1, with means6 0.01, 0.04 and 0.04 and standard deviations 0.02, 0.04 and
0.04. Truncation is to the set fm : m1om2om3g. The prior for h has 0:0004 � h�w2ð1Þ. The
rows of P are independent, with the following Dirichlet distributions:

ðP11;P12;P13Þ�Dið2; 2; 1Þ, (13)

ðP21;P22;P23Þ�Dið1; 3; 1Þ, (14)
5It is in billions of chained 2000 dollars, seasonally adjusted, at an annual rate. The source is the FRED II

(Federal Reserve Economic Data) database (www.stls.ftb.org/fred/data/gdp.html) and the series ID is GPDIC96.
6m2 ¼ 0:01 means an average 1% growth, at an annual rate with continuous compounding, in the moderate

growth rate state.

http:www.stls.ftb.org/fred/data/gdp.html
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ðP31;P32;P33Þ�Dið1; 2; 2Þ. (15)

f has a truncated multivariate normal distribution. The untruncated distribution has
independent fi, with f1�Nð0; 1Þ and fi�Nð0; 0:25Þ for i 2 f2; 3; 4g. Truncation is to the
stationary region.
We note that yt � mst

is stationary and Gaussian and therefore time reversible, so any
time irreversibility of yt must come from st. We also note that the density for P is invariant
to the relabelling of states 1 and 3, so that the prior is neutral with respect to the direction
of cycles in the L matrix.
Using the BACC software, we generate a posterior sample of 100,000 draws of all

parameters. The software implements the simulation methods described in Chib (1996), in
which fstg

T
1 is drawn as a single Gibbs block. We then construct posterior samples for p, P,

X and L. Table 5 shows the posterior mean and standard deviation of the elements of P, p,
P, X and L. Fig. 6 displays a histogram for the posterior sample of total circulation. The
posterior probability of negative total circulation is 0.7519.
Testing time reversibility would be desirable. One possible test in a Bayesian context

involves comparing, using Bayes factors, two models for fstg: one with a prior marginal
density f ðX Þ and L ¼ 0 with probability 1 and the other with the same density f ðX Þ and a
prior conditional density f ðLjX Þ. Such a test is conceptually simple, and since both models
imply exactly the same prior distributions for p, the state persistence Pii in every state and
the total flow Pij þPji between any two states (recall Result 3.2), the test is very suitable.
However, usual simulation methods require evaluation of the prior f ðX ;LÞ, and evaluation
of the normalization factor of f ðLjX Þ, which depends on X, is not always easy, even for
uniform f ðLjX Þ. For this reason, the issue of testing for time reversibility is left to another
paper, currently under preparation.
5. Conclusions

We have introduced the parameterization of a stationary regular finite-state Markov
chain by its joint probability matrix P, proposed a decomposition of P into its reversible
Table 5

Posterior mean and standard deviation of the elements of P, p, P, X and L in the investment growth example

P 0.2953 (0.1253) 0.2864 (0.1702) 0.4182 (0.1627)

0.0442 (0.0297) 0.9020 (0.0882) 0.0538 (0.0805)

0.2104 (0.1163) 0.3061 (0.1449) 0.4835 (0.1493)

p 0.0876 (0.0335) 0.7676 (0.1004) 0.1448 (0.0875)

P 0.0273 (0.0196) 0.0245 (0.0171) 0.0358 (0.0184)

0.0328 (0.0181) 0.6989 (0.1312) 0.0359 (0.0423)

0.0275 (0.0180) 0.0442 (0.0372) 0.0732 (0.0618)

X 0.0273 (0.0196) 0.0286 (0.0158) 0.0316 (0.0164)

0.6989 (0.1312) 0.0400 (0.0391)

0.0732 (0.0618)

L 0 (0) �0.0041 (0.0079) 0.0041 (0.0079)

0 (0) �0.0041 (0.0079)

0 (0)
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Fig. 6. Posterior histogram of total circulation for the investment growth example.
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part X and irreversible part L, and suggested an index, total circulation, describing a
certain kind of irreversibility in chains whose states are naturally ordered. Empirical
examples illustrate the use of these quantities, for both directly observed and latent chains.
The results suggest that total circulation is an empirically relevant quantity.

In these examples, uncertainty about the dynamics of the Markov chain is expressed as a
distribution over the Markov transition matrix P. Providing instead a marginal prior for X

and a conditional prior for LjX would have many advantages:
1.
7

8

A prior for X is easy to elicit. For example, one can choose a Dirichlet distribution (or a
mixture of such) for the following vector:

yX � ðX 11; 2X 12; . . . ; 2X 1m;X 22; 2X 23; . . . ; 2X 2m; . . . ;X mmÞ. (16)
2.
 The implied prior for p depends only on the prior for X (recall Result 3.2) and the fact
that p is a linear function of X (p ¼ i0X )7 means that first and second moments of pmay
be easy derived from the first two moments of X. The mean is particularly transparent:
E½p� ¼ i0E½X �. Consider the difficulty of finding moments of p given a prior on P.
3.
 Testing for reversibility of a stationary regular finite-state Markov chain fstg can be very
disciplined, as we have seen.
4.
 We can choose truncated priors for LjX to impose restrictions such as the direction of
total circulation C or a common sign on the circulation through all interior states. We
can also choose priors that are neutral about the direction of circulation without
resorting to the extreme form of symmetry used in this paper.

However, elicitation of LjX is not easy. Even with a flat prior, computing the
normalization factor for f ðLjX Þ, which we seem to need8 for posterior simulation since
i is an m� 1 vector of ones.

We have a paper in preparation which shows that we do not in fact need this normalization factor.
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it depends on X, is no simple feat. A paper in preparation shows how we can elicit priors
on LjX and therefore realize the above advantages.
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