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I present a theory of random consumer demand. The primitive is a collection of probability distributions

on budgets. Axioms constrain these distributions, including analogues of preference axioms, such as

transitivity, monotonicity and convexity. Results establish a complete representation of theoretically

consistent demand. The theory’s purpose is empirical application. To this end, the theory has desirable

properties. Intrinsically stochastic, econometricians can apply it without adding extrinsic randomness in

the form of errors. Random demand is parsimoniously represented by a single function on the

consumption set. Finally, there exist practical methods for inference based on the theory, described in a

companion paper.

INTRODUCTION

I begin with a familiar consumer demand environment. There are n consumer goods and
a consumption set X which is the non-negative orthant Rn

þ. Vectors x ¼ (x1, . . . , xn)AX
are bundles of these goods.

I add a consumer with income m facing a vector w ¼ (w1, . . . , wn) of prices. The
consumer can afford any bundle in the budget

Bðw;mÞ � fx[X : w0x)mg:

I assume that the consumer has preferences that are complete, transitive, continuous,
strictly monotone and strictly convex.

Figure 1 gives an example with n ¼ 3 goods. It shows a budget simplex B(w, m), some
indifference curves on the budget frontier �Bðw;mÞ � fx[X :w0x ¼ mg and the most
preferred feasible demand, denoted ðxn

1 ; x
n
2 ; x

n
3Þ.

In a commonly used approach to empirical consumer demand analysis, the
practitioner chooses a class of preferences, and then finds the preference in this class
for which optimal choices on observed budgets are closest to observed choices on these
budgets. For example, the practitioner may choose, as a class of preferences, those
preferences that rationalize demand systems with the AIDS (Almost Ideal Demand
System) parametric form, introduced by Deaton and Muellbauer (1980). In this case a
convenient and widely used measure of the closeness between optimal and observed
demand is the sum of squared differences of expenditure shares. Finding the preference
of best fit amounts to using ordinary least squares (OLS) to estimate the AIDS
parameters.

In terms of our example, the closeness of an observed choice (x1, x2, x3) to the
optimal bundle ðxn

1 ; x
n
2 ; x

n
3Þ is measured by the Euclidean distance between (x1w1/m, x2w2/

m, x3w3/m) and ðxn
1w1=m; x

n
2w2=m; x

n
3w3=mÞ.

I point out that this measure of closeness is unrelated to preference: the consumer
may be far from indifferent between two bundles equally close to ðxn

1 ; x
n
2 ; x

n
3Þ. Consider

two deviations from ðxn
1 ; x

n
2 ; x

n
3Þ obtained by trading off one unit of the third good. If we

exchange it for the first good, we move in the direction of A1; for the second good, in the
direction of A2. In terms of Euclidean distance between expenditure shares, both
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deviations are equally close to ðxn
1 ; x

n
2 ; x

n
3Þ. However, the shape of the indifference curves

tells us that the consumer is not indifferent between the two deviations: the area of the set
of budget frontier bundles intermediate in preference between the two deviations is quite
large.

Many would regard choice behaviour governed by regular preferences as ideal
behaviour, close enough to real behaviour to be a useful model, but not the literal truth.
Since ideal behaviour involves finding a choice to which no feasible alternative is
preferred, it makes sense to measure how close real behaviour is according to how few
feasible alternatives are preferred to the realized choice. This suggests that we compare
the closeness of two non-optimal bundles in terms of their relative desirability, rather
than their relative distances to the optimal choice. Varian (1990) argues for the former
and gives some examples of goodness-of-fit measures.

In a more general context, we can adopt a goodness-of-fit interpretation for the
likelihood-based statistical approaches that applied economists often use to estimate
preference and technology parameters. These approaches require the specification of
probability distributions for observables. Usually, however, economists view choice as
deterministic. And so the practitioner often adopts a measurement error approach, in
which probability distributions are said to govern errors between model predictions and
observed choices. An implicit measure of the goodness-of-fit of observed choices to
model predictions is the likelihood, the probability density of observable choices
evaluated at their realized values.

In the measurement error approach, the implied goodness-of-fit is measured in the
space of choices. But this is not an essential feature of likelihood-based statistical
approaches. Instead, we can specify probability distributions for observable choices
whose implied measure of fit is in terms of relative desirability. We just need to choose
densities over feasible choices whose level curves are the agent’s indifference curves. So
for example, the indifference curves of Figure 1 would also be the contours of the density
of observed choices. This approach has the benefit of measuring fit in terms of
desirability, and the additional advantage of parsimony, since it simplifies the joint
specification of preferences and densities.

FIGURE 1. A consumer demand example
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This paper develops this idea further, and the result is a new theory of random
consumer demand built on an axiomatic foundation. There is a utility-like representation
for theoretically consistent demand, and it is a function on the consumption set giving
choice distributions on all budgets.

The new theory is intimately related to classical consumer theory. Most assumptions
are analogous to classical axioms such as transitivity, monotonicity and convexity. The
theory is not exactly a generalization of the classical theory, but we have two theorems
showing that it is a near generalization. Theorem C1 states that, for any classical demand
behaviour rationalized by a complete, transitive, strictly monotone and convex
preference � on the consumption set X, there is observationally equivalent random
demand behaviour satisfying all but one of our axioms. Theorem C2 shows us that, even
with the missing axiom imposed, we obtain a sort of limiting observational equivalence.

I begin with a primitive that is a collection of choice distributions, not a preference
relation. I propose axioms that constrain these choice distributions. I show that
theoretically consistent random demand has a representation in the form of a function on
the consumption set. I call the representation an L-utility function, to invite intuitive
comparison with utility, but to avoid confusion.

The purpose of this new theoretical approach to consumer demand is to improve
work on empirical consumer demand problems. To this end, the theory has several
advantages. First, the ‘fit’ of an observed choice is measured by the relative desirability of
the choice and its feasible alternatives, rather than by some metric on the consumption
set.

The representation is parsimonious. A single L-utility function on the consumption
set not only describes how demand responds to changes in prices and income, as a utility
function does, but also gives choice distributions on all budgets.

The representation facilitates inference. Our representation theorems identify
theoretically consistent random demand with an L-utility function. The econometrician
can therefore work directly with the L-utility function. I have developed a practical
method for Bayesian non-parametric inference based on the theory, described in
McCausland (2004).

Demand is intrinsically stochastic, and so the econometrician can apply the theory
directly without recourse to error terms or random preferences. In usual practice,
distributions of errors and preferences are given without theoretical justification.

Unlike standard consumer theory, the proposed theory does not rule out the
violations of the axioms of revealed preference that are sometimes observed. The new
theory is more forgiving, without being undisciplined.

I. PRIMITIVES

Since the primitive concept in my theory is somewhat non-standard in economics, I must
digress briefly to situate the theory in the broader literature on theories of choice. I
remind readers of two important distinctions. The first is the difference between theories
of deterministic choice and theories of stochastic choice; the second is the difference
between random preference theories and random choice theories.

In theories of deterministic choice, the primitive is usually a binary preference, either
over a universe of objects or a set of probability distributions over a universe of objects.
The former is typically used to analyse choice under certainty, and the latter to study
choice under uncertainty. In both cases, however, choice itself is deterministic.
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In stochastic theories the primitive is usually either a probability distribution
over binary preferences or a collection of probability distributions, one for each
possible choice set. Theories featuring the former are called random preference
(or random utility) theories, while theories with the latter are called random choice
theories.

In economics, theories of choice are usually deterministic. Stochastic theories are
less common, but prevail in the literature on discrete choice. Almost all theories of
stochastic choice in economics are random preference, rather than random choice,
theories. Some exceptions include Debreu (1958), Georgescu-Roegen (1958), Halldin
(1974), Bandyopadhyay et al. (1999, 2002, 2004). Georgescu-Roegen (1958) and
Halldin (1974) are closest to the present paper, as they both concern the implications
of stochastic versions of binary preference axioms on consumer demand distributions.
The papers by Bandyopadhyay et al. take a revealed (stochastic) preference approach.
All of these papers are theoretical, and none attempts to provide a theory ready for
application to applied consumer demand problems.

In mathematical psychology, however, theories of choice are usually stochastic rather
than deterministic. An important reason is that individuals in experimental situations do
not always behave invariably, even in well controlled binary choice situations. Again in
contrast to the economics literature, theories of stochastic choice in mathematical
psychology are more often random choice theories than random preference theories. For
further reading on theories of choice in economics and mathematical psychology, see the
survey by Fishburn (1999); see also Davidson and Marschak (1959), Block and
Marschak (1960) and Luce and Suppes (1965).

My theory of random consumer demand is a random choice theory, so the primitive
concept is that of a random choice model, which gives a probability distribution on each
possible choice set.

I now digress to discuss the literature on the relationship between random choice
models and random preference modelsFnot because it is relevant to this research, but
rather to persuade readers that it is not. The literature (see Falmagne 1978; Cohen 1980;
Barberá and Pattanaik 1986 and McFadden and Richter 1990) concerns conditions on
random choice models to be rationalizable by (or observationally equivalent to) random
preference models. Typically, random preferences are required to be complete and
transitive, but are otherwise unconstrained.

As these conditions are not easy to verify, I do not know if there is a random
preference rationalization for my random demand. I do know that, if random preferences
are given by random utilities, with independent utility across objects, as they often are in
the discrete choice literature, then there is no such rationalization: I cannot ensure that
from every budget non-frontier elements are chosen with probability zero. In any case, I
am not in an abstract choice setting, but rather in a consumer demand setting, and one
would probably want to impose restrictions such as convexity and monotonicity on
random preference rationalizations. This, of course, complicates the problem. The
question of whether my random demand can be rationalized by monotone and convex
random preferences may be of some interest, but it is beyond the scope of this paper. In
particular, I do not seek to justify my approach by appealing to a random preference
rationalization. Indeed, I consider the random choice approach to have an important
advantage over the random preference approach. While there is plenty of theoretical
guidance on what restrictions to impose on random preferences, there is little on what
restrictions to impose on their distribution. Without such restrictions, the inferential
problem is intractable.
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I now define a random choice model and a random consumer demand model. The
first definition is similar to that in McFadden and Richter (1990). The second definition
specializes the model to a consumer demand environment.

Definition 1. The ordered 4-tuple (X, B, C, p) is a random choice model if the following
hold:

� X is a non-empty set. I will call X the universe and its elements objects.
� B is a set of non-empty subsets of X. I will call (X, B) the budget space and the

elements of B budgets. A budget is interpreted as a set of objects from which a decision
maker must choose a single element.

� C is a function on B assigning to each budget B an algebra CB of subsets of B. For
every budget BAB, a budget subset CACB is an event of the measurable space (B, CB),
and this event is interpreted as the choice by the economic agent of some element of C
when faced with budget B.

� p is a function on B assigning to each budget B a finitely additive probability measure
pB on measurable space (B, CB). I will call p the random choice function. In the special
case of consumer choice, I will use the term random demand function. For every budget
BAB and every budget subset CACB, pB(C) is the probability that the decision maker
chooses some element of C when faced with budget B.

Definition 2. A random consumer demand model is a random choice model (X, B, C, p)
where

1. for some integer nX 2, X ¼ Rn
þ,

2. B is the set of all non-empty finite subsets of X, and
3. for every budget BAB, CB is the power set of B.

Note that the consumer may face, as a budget, any non-empty finite subset of the
consumption set. While widespread in the mathematical psychology literature, the
finiteness of budgets goes against the grain of consumer theory, where the consumer faces
budgets of the form {xAX: w � x4m}, where w is a vector of positive prices of the n goods
and m is the consumer’s non-negative income. These classical budgets are not finite, and
therefore are not in our budget space.

However, we may consider finite lattices of points in classical budgets of whatever
density we like, so this is not a serious restriction. Real consumers and econometricians
have only a finite set of numbers available to express the quantities of goods they demand
or observe, respectively. Furthermore, the currency used in transactions is not infinitely
divisible.

Random choice models feature a probability distribution for every budget. For all
but the simplest budget spaces, this is a large amount of information, offering an
excessive number of degrees of freedom. In practice, we must add discipline to these
models by introducing assumptions jointly constraining these distributions. This is done
in the next section.

II. ASSUMPTIONS ON p

We move on to assumptions about the random demand function p. Throughout this
section, we shall suppose that (X, B, C, p) is a random consumer demand model.
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The assumptions are mostly analogous to assumptions in classical consumer demand
theory. Although they apply to different primitives than the classical axioms do, they are,
in a sense made precise in Theorems C1 and C2, weaker than the classical axioms. These
results, together with the general acceptance of the classical axioms, are justification for
the assumptions that follow.

Assumptions on p are classified as either assumptions on binary choice or
assumptions relating binary and multiple choice.

Binary choice probabilities

The assumptions on binary choice probabilities are analogous to assumptions about
binary preferences in deterministic theories. The following notation is a handy and
commonly used shorthand for binary choice probabilities.

Definition 3. For every x, yAX such that x 6¼ y, define p(x, y) � p{x, y}({x}).
In deterministic theories of choice, binary preferences are usually complete. A

probability distribution on a singleton set must assign probability 1 to that set, and for all
distinct x, yAX, p(x, y) þ p(y, x) ¼ 1. The probabilistic framework thus builds in
conditions analogous to completeness.

In a survey of stochastic utility, Fishburn (1999) describes nine stochastic analogues
of the transitivity assumption, including the following.

Assumption 1. (Moderate Stochastic Transitivity). For every x, y, zAX such that x 6¼ y,
y 6¼ z, and x 6¼ z, minðpðx; yÞ; pðy; zÞÞ*1

2
) pðx; zÞ*minðpðx; yÞ; pðy; zÞÞ.

We now turn to analogues of assumptions on preferences in consumer demand
theory in particular. The next assumption is analogous to monotonicity, expressing the
idea that more is better than less. The stochastic nature of human choice is often
attributed to conflict in choice. When distinct objects x and y are such that xiX yi for
i ¼ 1, . . . , n, there is no conflict in choice: one object is unambiguously better in at least
one dimension, and no worse in every dimension. The assumption states that x will
invariably be chosen from the budget {x, y}.

Assumption 2. (Monotonicity). For every x, yAX such that x 6¼ y, xX y ) p(x, y) ¼ 1.
The next assumption is analogous to the classical convexity assumption, which

expresses the idea that, to obtain more and more of one good, the consumer is less and
less willing to forgo other goods. The following assumption expresses the similar idea
that, as one moves through the consumption set in any direction, the strength of the
propensity to choose a farther element over a nearer one does not increase.

Assumption 3. (Convexity). For every x, yAX, pð1
2
xþ 1

2
y; xÞ*pðy; 1

2
xþ 1

2
yÞ.

The final assumption on binary preferences states that, whenever there is conflict
between two choices, that is whenever one choice dominates the other in one dimension
and is dominated in another, choice probabilities are non-degenerate. The assumption
serves to connect tripleton budgets in such a way that there is a single L-utility scale on
the consumption set rather than a collection of local scales.

Assumption 4. (Non-Degenerate Choice in Cases of Conflict). For every x, yAX such that
there are i and j with xi4yi and xjoyj, p(x, y)A(0, 1).
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Luce (1959), in a more general context, uses Strong Stochastic Transitivity (SST:
replace ‘min’ with ‘max’ in Assumption 1, Moderate Stochastic Transitivity) to deliver a
single L-utility scale. SST has undesirable implications in our consumer demand context.
To see this, suppose that (1, 2) and (2, 1) are chosen with equal probability from {(1, 2),
(2, 1)}. Let e40. Assumption 2 (Monotonicity) requires that (2, 1) be chosen with
probability 1 from {(2, 1), (2� e, 1)}, and SST then implies that (1, 2) is chosen with
probability 1 from {(1, 2), (2� e, 1)}. Assumption 4 allows us to obtain a global scale
without assuming SST. Note that Assumption 1, Moderate Stochastic Transitivity, only
constrains the probability of choosing (1, 2) from {(1, 2), (2� e)} to be greater than 1/2,
which is reasonable.

We will see that Assumption 4 is indispensable, in the sense that any random demand
behaviour represented by a regular L-utility function satisfies this assumption, an
immediate consequence of Theorem 2.

Multiple choice probabilities

The assumption relating binary choice probabilities and multiple choice probabilities is
analogous to the usually implicit assumption, known as menu independence, that
preferences do not depend on budgets. The assumption, like menu independence, is
important for obtaining a representation (utility or L-utility, as the case may be) that is a
single function on the consumption set.

The assumption will lead to independence of irrelevant alternatives on budget
frontiers, a property that is considered by many, with justification, to be too strong for
discrete choice models in which the universe of objects is abstract and unstructured. So it
is important to make two observations. First, menu independence has been generally
accepted in the context of classical consumer demand for decades. Second, the theory of
random demand developed here is a near generalization of classical demand, in the sense
of Theorems C1 and C2.

The following assumption, due to Luce (1959), constrains choice distributions across
budgets. In particular, it relates binary choice probabilities to multiple choice
probabilities. It is the key assumption allowing the representation of random consumer
demand by a single function on the consumption set.

The first part of the axiom concerns budget sets for which all choices on binary
subsets have non-zero probability. For such budgets and their subsets, the axiom states
that relative choice probabilities are independent of the presence of other alternatives in
the budget: for every budget B and non-empty C � B, the distribution pC( � ) coincides
with the conditional distribution pB( � |C) on C. Luce calls this part of the axiom ‘a
probabilistic version of . . . [Arrow’s] independence-from-irrelevant-alternatives idea’.

The second part of the axiom concerns budget sets for which some choices on binary
subsets have zero probability. It says that in a budget B with elements x and y satisfying
p(x, y) ¼ 0, x may be ignored: the probability of choosing x from B is zero, and the
probability of choosing another element from B is the same as the probability of
choosing it from B\{x}.

Assumption 5. (Luce’s Choice Axiom). For every BAB, and every S � B,

1. If p(x, y)A(0, 1) for every x, yAB such that x 6¼ y, then for every R � S,

pBðRÞ ¼ pSðRÞ � pBðSÞ:
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2. If p(x, y) ¼ 0 for some x, yAB such that x 6¼ y, then

pBðSÞ ¼ pBnfxgðSnfxgÞ:

We will see in Appendix A that Luce’s Choice Axiom introduces further restrictions
on binary choice. It implies a stronger condition on p(x, y), p(y, z) and p(x, z) than
Moderate Stochastic Transitivity whenever these probabilities are all in (0, 1).

I now explain why I rule out uncountable budget sets such as classical budgets.
Allowing both uncountable budget sets and the finite budget sets that appear in many of
our assumptions is problematic. Suppose choice probabilities on uncountable sets are
absolutely continuous with respect to Lebesgue measure, a reasonable case to consider in
the context of consumer demand, if not the only one. Then part one of Luce’s choice
axiom fails to constrain when R is finite and B is uncountable, whatever the cardinality
of S.

III. REPRESENTATION THEOREMS

The two theorems of this section concern the representation of random demand
functions by regular functions on the consumption set. The following definition of
regularity is specific to this paper.

Definition 4. A function u : Rnf0g ! R, where nX 2, is regular if

1. u is non-decreasing, and
2. for every w[Rn

þþ and every m[Rþþ, u is log-concave on the classical budget frontier
fx[X : w � x ¼ mg.

Together, the theorems identify theoretically consistent random demand with a
regular L-utility function, which is important for applied consumer demand analysis: the
econometrician can work with L-utility functions, rather than random demand functions
themselves. In a companion paper (McCausland 2004), I have developed a practical
method for Bayesian semi-nonparametric inference for L-utility functions using
consumer demand data.

The first theorem establishes the existence and uniqueness of the representation up to
a multiplicative positive constant. The significance of existence is that the econometrician
can work with L-utility functions and not miss any theoretically consistent random
demand. The significance of uniqueness (the representation can be made unique by fixing
the value of the function at any one point) is that the L-utility function is identified by the
data.

We define, for each budget B, the frontier B̂ as the subset of objects not vector-
dominated by other elements of B. We will see that B̂ is the set of objects chosen with
non-zero probability from B.

Definition 5. For any budget BAB, define B̂, the frontier of B, by

B̂ ¼ fx[B : there is no y[Bnfxg such that y*xg:

We are now ready to state the first theorem.

Theorem 1. (Existence and Uniqueness of Representation). If (X, B, C, p) is a random
consumer demand model satisfying Assumptions 1, 2, 3, 4 and 5, then there exists a
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regular function u : Xnf0g ! Rþþ, unique up to the multiplication of a positive
constant, such that, for every budget BAB and every event CACB, pB(C) is given by

ð1Þ pBðCÞ ¼
X

x[C\B̂

uðxÞ
.X

y[ B̂

uðyÞ:

As in deterministic theories of consumer demand, we have a representation for
theoretically consistent demand as a single function on the classical consumption set.
Note that demand is concentrated on the budget frontier, and that on this frontier
bundles with higher L-utility are chosen with greater probability than bundles with lower
L-utility. The log-concavity properties of L-utility are analogous to the quasi-concavity
of utility.

The next definition establishes the relational symbols 6� and � as shorthand notation
denoting whether or not a pair of objects in X features one object vector-dominating the
other. The importance of this notation lies in the consequence of Assumptions 2
(Monotonicity) and 4 (Non-Degenerate Choice in Cases of Conflict) that, for all x, yAX,
the choice from {x, y} is non-degenerate (i.e. p(x, y)A(0, 1)) if and only if x � y.

Definition 6. Define the binary relation � on X by x � y , x�y and y�x, and let the
binary relation 6� on X denote its complement.

The second theorem establishes the completeness of the representation. The
significance of completeness is that an L-utility function estimated by an econometrician
is guaranteed to be the representation of some theoretically consistent random demand
behaviour.

Theorem 2. (Completeness of Representation). Suppose that nX 2 and that u :
Rn
þnf0g ! Rþþ is regular. Then there exists a unique random consumer demand model
ðRn
þ;B;C; pÞ such that

1. ðRn
þ;B;C; pÞ satisfies Assumptions 1, 2, 3, 4 and 5; and

2. for all budgets BAB, and all events CACB, pB(C) is given by (1).

IV. CONCLUSIONS

I have drawn from stochastic theories of choice in mathematical psychology and
deterministic theories of choice and consumer demand in economics to develop a new
theory of random consumer demand. The theory has several desirable properties that
motivate its application to empirical consumer demand problems.

The representation theorems establish an identification of any theoretically consistent
random demand function with a regular L-utility function and vice versa. An
econometrician can therefore work with regular L-utility functions rather than with
random demand functions directly. This is more convenient.

The theory is intrinsically stochastic, which allows econometricians to apply the
theory without adding extrinsic randomness in the form of residuals.

The theory does not stand or fall on a sharp testable implication such as the Strong
Axiom of Revealed Preference. There are degrees of fit, and the theory can be evaluated
on this basis. The theory measures the ‘fit’ of an observed choice to a regular-utility
function by the relative L-utilities of the choice and its feasible alternatives. This is an
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intrinsic measure of fit, and stands in contrast to extrinsic measures of fit, such as the
Euclidean distance of a choice to the object that maximizes the utility function.

While random demand functions have the ‘independence of irrelevant alternatives’
property on budget frontiers and their subsetsFa property many consider too restrictive
in the context of the discrete choice literature, where choice sets are abstract and
unstructuredFthe theory is a near generalization, in a sense made precise in Theorems
C1 and C2, of classical demand theory, which is generally accepted.

In a related paper I have described a practical method for Bayesian inference using
the theory (McCausland 2004). I use polynomials on a transformed consumption set to
approximate log L-utility functions, giving flexibility and regularity on a large subset of
the consumption set. I apply the theory and inferential methods to analyse data from a
consumer experiment.

APPENDIX A: PROOF OF EXISTENCE AND UNIQUENESS OF REPRESENTATION

Let (X, B, C, p) be a random consumer demand model satisfying Assumptions 1, 2, 3, 4 and 5.
The proof proceeds as follows. First I prove a useful triplet result. Then I construct a function u

on Xnf0g. I next show that, for all x, yAX such that x � y (i.e. neither xX y nor yXx), we can use
u to reconstruct the binary choice probability p(x, y). I then use this result to show that for all
budgets B we can use u to reconstruct the choice distribution pB. Next, I show that u is regular.
Finally, I show that u is unique up to the multiplication of a positive constant.

A triplet result

The following triplet result is a useful intermediate result.

Claim A1. For all objects x, y, zAX satisfying x � z, y � z and z � x,

ð2Þ pðx; yÞpðy; zÞpðz; xÞ ¼ pðy; xÞpðz; yÞpðx; zÞ:

Proof. Let x, y, zAX satisfy x � z, y � zand z � x. Let budget B � {x, y, z}. Assumptions 4 (Non-
Degenerate Choice in Cases of Conflict) and 5 (Luce’s Choice Axiom) (part 1) give us the following
six equations:

pBðfx; zgÞ � pðx; zÞ ¼ pBðfxgÞ ¼ pBðfx; ygÞ � pðx; yÞ

pBðfx; ygÞ � pðy; xÞ ¼ pBðfygÞ ¼ pBðfy; zgÞ � pðy; zÞ

pBðfy; zgÞ � pðz; yÞ ¼ pBðfzgÞ ¼ pBðfx; zgÞ � pðz; xÞ

and guarantee that all binary probabilities in the six equations are non-zero. Since {x, y} [ {x,
z} ¼ B, pB({x, y}) þ pB({x, z})X 1, pB({x, y}) and pB({x, z}) cannot both be zero, and therefore
pB({x})40. Therefore pB({x, y})40 and pB({x, z})40. Similarly, all the probabilities in the second
and third lines must also be non-zero.

We thus obtain

1 ¼ pBðfxgÞ
pBðfygÞ

� pBðfygÞ
pBðfzgÞ

� pBðfzgÞ
pBðfxgÞ

¼ pðx; yÞ
pðy; xÞ �

pðy; zÞ
pðz; yÞ �

pðz; xÞ
pðx; zÞ

and equation (2) immediately follows. &

Construction of u

I now construct my representation. This resembles the representation of Theorem 4 in Luce (1959).
Furthermore, the approach I use to construct the representation is similar to that of Luce.
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However, the two additional assumptions that Luce makes to guarantee the uniformity of his
representation across budgets are different from the key assumption that I use to guarantee this
uniformity, i.e. Assumption 4 (Non-Degenerate Choice on Budget Frontiers). This assumption
neither implies nor is implied by Luce’s two additional assumptions.

Choose an object aAX such that a40, and a real constant k40. Define u(a) � k. Now
consider any object b[Xnf0; ag. If b � a, then p(a, b)40 and p(b, a)40 by Assumption 4. I define

uðbÞ � k � pðb; aÞ
pða; bÞ ;

and note that it must be positive.
If b 6� a, then let Xab � fx[X : x � a and x � bg, and define uab : Xab ! R by

uabðxÞ ¼ k � pðb; xÞ
pðx; bÞ �

pðx; aÞ
pða; xÞ 8x[Xab:

I will show that Xab 6¼+ and that uab is well defined, positive and constant. I will then define u(b)
to be this constant value.

We can express Xab as the following union of rectangles:

Xab ¼
[

i;j [ f1;...;ng
i 6¼j

X
fi;jg
ab �

[
i;j [ f1;...;ng

i 6¼j

fx[X : xi<xi and xj>xjg;

where

x � a a)b
b a*b

�
and �x � b a)b

a a*b:

�
(Since b 6� a, it must be the case that either aX b or bX a.)

Since a40 and b 6¼ 0, at least one of the rectangles X
fi;jg
ab is non-empty, and so Xab 6¼+.

Assumption 4 guarantees that, for all xAXab, p(x, a), p(a, x), p(x, b), and p(b, x) are all positive.
Therefore uab(x) is well defined and positive for all xAXab.

I now show that uab is constant on Xab. I take arbitrary elements x, yAXab, and show that
uab(x) ¼ uab(y). I consider the cases x � y and x 6� y separately. First, suppose x, yAXab and x � y.
We can apply the triplet result twice to obtain

pðx; aÞ
pða; xÞ �

pða; yÞ
pðy; aÞ ¼

pðx; yÞ
pðy; xÞ ¼

pðx; bÞ
pðb; xÞ �

pðb; yÞ
pðy; bÞ

k � pðb; xÞ
pðx; bÞ �

pðx; aÞ
pða; xÞ ¼ k � pðb; yÞ

pðy; bÞ �
pðy; aÞ
pða; yÞ

uabðxÞ ¼uabðyÞ

Now suppose x, yAXab and x 6� y. Objects x and y must be in the same rectangle X
fi;jg
ab , since

otherwise x � y. I now construct a zAXab such that x � z and y � z, so that uab (z) is equal to both
uab (x) and uab (y). Define z � (z1, . . ., zn)AXab as follows:

zk ¼

1
2
xi þ 1

2
maxðxi; yiÞ k ¼ i

1
2
�xj þ 1

2
minðxj ; yjÞ k ¼ j

0 k[f1; . . . ; ngnfi; jg:

8>><>>:
Since x � z and y � z, uab(x) ¼ uab(z) ¼ uab(y).

The cases x � y and x 6� y are exhaustive, so I have shown that uab is constant and positive on
the non-empty set Xab. I now define u(b) to be this constant value.

Since b was an arbitrary element of Xnfa; 0g, I have constructed a function u on the entire set
Xnf0g.
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Non-degenerate choices on binary budgets

I now show that, for all x, yAX such that x � y (i.e. neither xX y nor yXx), we can use u to
reconstruct the binary choice probability p(x, y).

Claim A2. For every x, yAX such that x � y,

ð3Þ pðx; yÞ
pðy; xÞ ¼

uðxÞ
uðyÞ :

Proof. Let aAX be the object used in Appendix A to construct u. Let x; y[Xnf0gbe such that x � y.
Choose i, jA{1, . . ., n} such that yi40 and j 6¼ i.

First I show that if xi40 then (3) holds. Then I use this result to show that (3) holds even if
xi ¼ 0.

Suppose xi40, and define z � (z1, . . ., zn) by

zk ¼
maxðxj ; yj ; ajÞ þ 1 k ¼ j
0 k[f1; . . . ; ngnfjg:

�
Then z � x, z � y, and z � a. Using the triplet result (Claim A1) and the definition of u, we
obtain

pðx; yÞ
pðy; xÞ ¼

pðx; zÞ
pðz; xÞ �

pðz; yÞ
pðy; zÞ ¼ uðxÞ � pða; zÞ

pðz; aÞ � uðyÞ � pða; zÞ
pðz; aÞ

� ��1
¼ uðxÞ

uðyÞ :

Now suppose xi ¼ 0. Let w ¼ 1
2
xþ 1

2
y. Then wi40, w � x, and w � y, and so, by the result just

proved,

pðx;wÞ
pðw; xÞ ¼

uðxÞ
uðwÞ and

pðy;wÞ
pðw; yÞ ¼

uðyÞ
uðwÞ :

By the triplet result (Claim A1),

pðx; yÞ
pðy; xÞ ¼

pðx;wÞ
pðw; xÞ �

pðw; yÞ
pðy;wÞ ¼

uðxÞ=uðwÞ
uðyÞ=uðwÞ ¼

uðxÞ
uðyÞ : &

Choices on finite budgets

I now use the previous result to show that for every budget B we can use u to reconstruct the choice
distribution pB.

Claim A3. For every budget BAB, and every event CACB,

pBðCÞ ¼
X

x[C[B̂

uðxÞ
.X

y[ B̂

uðyÞ;

where B̂ is the budget frontier (Definition 5) of B.

Proof. Let BAB. Repeated application of Assumption 5 (Luce’s Choice Axiom, part 2), gives
pBðxÞ ¼ pB̂ðxÞ for all x[B̂, and, since pB is a probability measure, pB(x) ¼ 0 for all x[BnB̂.
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Using the result on binary budgets (Claim A2) and part 1 of Assumption 5 (Luce’s Choice
Axiom), we have, for every x[B̂,

1

pB̂ðxÞ
¼
P

y[ B̂ pB̂ðyÞ
pB̂ðxÞ

¼
X
y[ B̂

pB̂ðyÞ
pB̂ðxÞ

¼ 1þ
X

y[ B̂nfxg

pB̂ðfx; ygÞpðy; xÞ
pB̂ðfx; ygÞpðx; yÞ

¼ 1þ
X

y[ B̂nfxg

uðyÞ
uðxÞ ¼

P
y[ B̂ uðyÞ
uðxÞ

Therefore for every xAB,

pBðxÞ ¼
uðxÞ=

P
y[ B̂ uðyÞ x[B̂

0 x[BnB̂:

(

Since pB is a probability measure, the claim follows. &

Regularity of u

The following results establish the regularity of u.

Claim A4. The function u is non-decreasing.

Proof. Let x; y[Xnf0gsatisfy xX y. Note that p(x, y) ¼ 1 by Assumption 2 (Monotonicity). Let
z[Xnf0g satisfy z � x and z � y.

I first show that p(z, y)X p(z, x).

� Case pðz; xÞ*1
2
: Apply Assumption 1 (Moderate Stochastic Transitivity) to obtain p(z, y)X

min(p(z, x), p(x, y))X p(z, x).
� Case pðz; xÞ*1

2
: Suppose to the contrary that p(z, y)op(z, x). Then pðy; zÞ>pðx; zÞ> 1

2
. By

Assumption 1 (Moderate Stochastic Transitivity), we obtain p(x, z)Xmin(p(x, y), p(y, z))4p(y,
z), and therefore p(z, x)op(z, y), which contradicts p(z, y)op(z, x).

Since p(z, y)X p(z, x), u(x)X u(y). So we have xX y ) u(x)X u(y) for all x; y[Xnf0g. That is,
u is non-decreasing. &

Claim A5. For every w[Rn
þþ and every m[Rþþ, u is concave on the classical budget frontier

{zAX:w � z ¼ m}.

Proof. Let w[Rn
þþ and m[Rþþ. Let x, yA{zAX:w � z ¼ m}. By Assumption 3 (Convexity),

ð4Þ p
1

2
xþ 1

2
y; x

� �
*p y;

1

2
xþ 1

2
y

� �

and

ð5Þ p
1

2
xþ 1

2
y; y

� �
*p x;

1

2
xþ 1

2
y

� �
:
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It must be the case that x � 1
2
xþ 1

2
y � y, since otherwise w0x 6¼w0y. Therefore the probabilities

in equations (4) and (5) are all non-zero, and so

pð1
2
xþ 1

2
y; xÞ

pðx; 1
2
xþ 1

2
yÞ

*

pðy; 1
2
xþ 1

2
yÞ

pð1
2
xþ 1

2
y; yÞ

uð1
2
xþ 1

2
yÞ

uðxÞ *

uðyÞ
uð1

2
xþ 1

2
yÞ

u
1

2
xþ 1

2
y

� �� �2
*uðxÞuðyÞ

log u
1

2
xþ 1

2
y

� �
*

1

2
log uðxÞ þ 1

2
log uðyÞ:

Since this is true for all distinct x, y on the classical budget frontier, u must be log-concave
there. &

Uniqueness of u

Claim A6. The representation u is unique up to the multiplication of a positive constant.

Proof. We want to show that if u and u0 are both regular, and both represent (X,B, C, p), then there
exists a constant c40 such that u0 ¼ cu. Suppose u and u0 are both regular, and both represent
(X, B, C, p). Let z[Xnf0g satisfy z40. Let c � u0(z)/u(z).

Now choose any x[Xnf0g. If x ¼ z, then u0(x) ¼ cu(x) immediately. If x 6¼ z, then choose a
yAXzx. Then

uðxÞ
uðyÞ ¼

pðx; yÞ
pðy; xÞ ¼

u0ðxÞ
u0ðyÞ and

uðyÞ
uðzÞ ¼

pðy; zÞ
pðz; yÞ ¼

u0ðyÞ
u0ðzÞ ;

and therefore

u0ðxÞ ¼ uðxÞ � u
0ðyÞ
uðyÞ ¼ uðxÞ � u

0ðzÞ
uðzÞ ¼ cuðxÞ: &

APPENDIX B: PROOF OF COMPLETENESS OF REPRESENTATION

Let nX 2, and let u : Rn
þnf0g ! Rþþ be any regular function. Let X ¼ Rn

þ andB be the set of finite
subsets of X. For each BAB, let C be the power set of B. I first use u to construct a p, and note that
u represents p. I then show that (X, B, C, p) satisfies Assumptions 1, 2, 3, 4 and 5.

Construct p so that, for every BAB and every CACB,

pBðCÞ �
X

x[C\B̂

uðxÞ
.X

y[ B̂

uðyÞ:

Clearly, p is uniquely specified, and u represents it.

Claim B1. (X, B, C, p) satisfies Assumption 1 (Moderate stochastic transitivity).

Proof. Let x, y, zAX satisfy x 6¼ y, y 6¼ z and x 6¼ z, and suppose pðx; yÞ*1
2
and pðy; zÞ*1

2
. If xX y,

then u(x)X u(y) by monotonicity of u. If x � y, then p(x, y) ¼ u(x)/[u(x) þ u(y)] and so u(x)X u(y).
We can rule out yXx since it contradicts pðx; yÞ*1

2
. Therefore u(x)X u(y). Similarly, u(y)X u(z).

We show the result that p(x, z)Xmin(p(x, y), p(y, z)) for three cases.
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� Case xX z: Then p(x, z) ¼ 1Xmin(p(x, y), p(y, z)) and we are done.
� Case zXx: Since u(x)X u(y)X u(z), monotonicity of u rules out this case.
� Case x � z: Then p(x, z)/p(z, x) ¼ u(x)/u(z). Since xX y and yX z imply xX z, at least one of
x � y and y � z must hold. If x � y, then p(x, y)/p(y, x) ¼ u(x)/u(y), and therefore

pðx; zÞ
pðz; xÞ ¼

uðxÞ
uðzÞ*

uðxÞ
uðyÞ ¼

pðx; yÞ
pðy; xÞ*min

pðx; yÞ
pðy; xÞ ;

pðy; zÞ
pðz; yÞ

� �
:

If y � z, then p(y, z)/p(z, y) ¼ u(y)/u(z), and therefore

pðx; zÞ
pðz; xÞ ¼

uðxÞ
uðzÞ*

uðyÞ
uðzÞ ¼

pðy; zÞ
pðz; yÞ*min

pðx; yÞ
pðy; xÞ ;

pðy; zÞ
pðz; yÞ

� �
:

Either way, since the transformation f(p) ¼ p/(1 � p) is monotonically increasing, p(x, z)X
min(p(x, y), p(y, z)). &

Claim B2. (X, B, C, p) satisfies Assumptions 2 (Monotonicity) and 4 (Non-Degenerate Choice in
Cases of Conflict).

Proof. Let x, yAX satisfy x 6¼ y. If xX y, then p(x, y) ¼ p{x}({x}) ¼ 1. If yXx, then p(x, y) ¼ 0. If
x � y, then p(x, y) ¼ u(x)/[u(x) þ u(y)]A(0, 1). &

Claim B3. (X, B, C, p) satisfies Assumption 3 (Convexity).

Proof. Let x, yAX satisfy x � y. Let z � 1
2
xþ 1

2
y. Since x, y, and z lie on a budget frontier, condition

2 of Theorem 1 gives

log uðzÞ*1

2
log uðxÞ þ 1

2
log uðyÞ

1

2
log uðzÞ � 1

2
log uðyÞ*1

2
log uðxÞ � 1

2
log uðzÞ

uðzÞ=uðyÞ*uðxÞ=uðzÞ:

Now since x � z and y � z,

pðz; xÞ ¼ uðzÞ=½uðxÞ þ uðzÞ	 ¼ 1=½1þ uðxÞ=uðzÞ	

pðy; zÞ ¼ uðyÞ=½uðyÞ þ uðzÞ	 ¼ 1=½1þ uðzÞ=uðyÞ	;

and therefore p(z, x)X p(y, z). &

Claim B4. (X, B, C, p) satisfies Assumption 5 (Luce’s Choice Axiom).

Proof. Let BAB, and let S � B. First take the case that p(x, y)A(0, 1) for every x, yAB such that
x 6¼ y. Then B̂ ¼ B and Ŝ ¼ S. Let R � S. Then

pBðRÞ ¼
X
x[R

uðxÞ
.X

y[B

uðyÞ;

pSðRÞ ¼
X
x[R

uðxÞ
.X

y[S

uðyÞ;

pBðSÞ ¼
X
x[S

uðxÞ
.X

y[B

uðyÞ;

and clearly, pB(R) ¼ pS(R) � pB(S).
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Now take the case where there exists x, yAB such that x 6¼ y and p(x, y) ¼ 0. Then xeB̂ and
B̂ ¼ dBnfxg and

pBðSÞ ¼
X

x[S\B̂

uðxÞ
.X

y[ B̂

uðyÞ ¼
X

x[S=fxg\ dBnfxg uðxÞ
. X

y[ dBnfxg uðyÞ
¼ pBnfxgðSnfxgÞ:

APPENDIX C: TWO THEOREMS ON RANDOM DEMAND AS A NEAR
GENERALIZATION OF CLASSICAL DEMAND

The following two theorems elucidate the relationship between the random demand introduced in
this paper and classical demand. A major purpose of these theorems is to justify our assumptions,
particularly Assumption 5, Luce’s choice axiom. Theoretically consistent random demand
functions have the independence of irrelevant alternatives (IIA) property on budget frontiers
and their subsets, a property that many, starting with Debreu (1960), have criticized for its
implausible implications in certain choice contexts. In the discrete choice literature, where choice
sets are usually abstract and unstructured, IIA is usually considered, with justification, as being too
restrictive.

However, menu independence, to which Luce’s Choice Axiom is analogous, is generally
accepted in classical demand theory. In the sense made precise by the two following theorems, we
are generalizing, not restricting, this theory.

The first theorem shows us that, for any classical demand behaviour, there exists random
demand behaviour satisfying all but one of the axioms. The missing axiom is dealt with in the
second theorem.

We first need some definitions. Let X ¼ Rn
þ, the classical consumption set and let (X, B) be the

space of all finite budgets on X.
Define, for any preference relation � on X, the demand correspondence h � : B ! X as

follows. For each budget BAB,

hðBÞ ¼ fx[B : there is no y[B such that y � x and not x � yg:

Define, for any random demand function p on (X, B), the demand support correspondence
g:B ! X as follows. For each budget BAB,

gpðBÞ ¼ fx[B : pBðxÞ>0g:

I am now ready to state and prove the first theorem.

Theorem C1. Let � be a complete, transitive, strictly monotone, and convex preference relation
on X. Then there exists a random demand function p on (X, B) such that

1. for all BAB, gpðBÞ ¼ h�ðBÞ
2. p satisfies Assumptions 1, 2, 3 and 5.

Proof. Let � be a complete, transitive, strictly monotone and convex preference relation on X.
Define random demand function p as follows. For all BAB and all subsets S � B,

PBðSÞ ¼
#½S \ hðBÞ	

#½hðBÞ	

where #[A] denotes the cardinality of any finite set A. We see that, for all BAB, pB( � ) is the uniform
distribution on h(B). The finiteness of B and the completeness and transitivity of � guarantee that
h(B) is not empty.

Note that the definition of p implies that, for all x, yAX, pðx; yÞ[f0; 1
2
; 1g.
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I now show that p satisfies Assumption 1, Moderate Stochastic Transitivity. Let x, y, zAX and

suppose that pðx; yÞ*1
2
and pðy; zÞ*1

2
. If pðx; yÞ ¼ 1

2
and pðy; zÞ ¼ 1

2
, then x � y and y � z

and therefore x � z by transitivity. Therefore pðx; zÞ*1
2
¼ min½pðx; yÞ; pðy; zÞ	. If pðx; yÞ ¼ 1

2
and

p(y, z) ¼ 1, then x � y and y 
 z and therefore x 
 z by transitivity. Therefore p(x, z) ¼ 1X

min[p(x, y), p(y, z)]. Similarly, if p(x, y) ¼ 1 and pðy; zÞ ¼ 1
2
, or if p(x, y) ¼ p(y, z) ¼ 1, then p(x,

z)Xmin[p(x, y), p(y, z)].
Assumption 2 (Monotonicity) is straightforward. If xi4yi for all iA{1, . . ., n}, then x 
 y and

p(x, y) ¼ 0.
I finally show that p satisfies Assumption 3 (Convexity). Let x, yAX. If pðy; 1

2
xþ 1

2
yÞ ¼ 0, then

pð1
2
xþ 1

2
y; xÞ*pðy; 1

2
xþ 1

2
yÞ trivially. If pðy; 1

2
xþ 1

2
yÞ ¼ 1

2
, then y � 1

2
xþ 1

2
y. Convexity of � rules

out x 
 1
2
xþ 1

2
y, so pð1

2
xþ 1

2
y; xÞ*1

2
¼ pðy; 1

2
xþ 1

2
yÞ. If pðy; 1

2
xþ 1

2
yÞ ¼ 1, then y 
 1

2
xþ 1

2
y.

Convexity of � rules out x � 1
2
xþ 1

2
y, so pð1

2
xþ 1

2
y; xÞ ¼ 1 ¼ pðy; 1

2
xþ 1

2
yÞ.

I now demonstrate that Part 1 of Assumption 5, Luce’s Choice Axiom, holds. Let BAB and
SAB such that S � B, and suppose p(x, y)A(0,1) for all x, yAB such that x 6¼ y. Then x � y for all
x, yAB. Then for all R � B, h(R) ¼ R, and so

pBðRÞ ¼
#½R	
#½B	 ; pSðTÞ ¼

#½R	
#½S	 ; and pBðSÞ ¼

#½S	
#½B	 :

Therefore pB(R) ¼ pS(R) � pB(S).
Finally, I show that Part 2 of Luce’s Choice Axiom holds. Let S, BAB such that S � B.

Suppose there exist x, yAB such that x 6¼ y and p(x, y) ¼ 0. Then y 
 x and therefore xeh(B). By
transitivity, hðBnfxgÞ ¼ hðBÞ. Therefore

pBðSÞ ¼
#½S \ hðBÞ	

#½hðBÞ	

¼ #½Snfxg \ hðBnfxgÞ	
#½hðBnfxgÞ	

¼ pBnfxgðSnfxgÞ: &

The second theorem, which follows, shows us that with the missing axiom imposed we can
achieve a sort of limiting observational equivalence. The lack of uniformity over B (i.e. the
dependence of e below on {B1, . . . , BN}) is unfortunate. In practice, however, I recommend
working with budgets that are the intersection of fine lattices with classical budgets. With, in
addition, a large but finite bound on the quantities of each good, we have a finite working budget
space.

Theorem C2. Let � be a complete, transitive, continuous strictly monotone, and convex
preference relation on X. Let {B1, . . . , BN} be a finite subset of the budget space B. Then there
exists an e40 and a random demand function p on (X, B) such that

1. For all BA{B1, . . . , BN},

pBðh�ðBÞÞ*1� e;

2. p satisfies Assumptions 1, 2, 3, 4 and 5.

Proof. Lemma 2 of Kannai (1974) states that, for every compact K with non-empty interior, and for
every complete continuous, strictly monotone, and convex preference order � , there exists a
sequence { � m} of complete, continuous monotone and convex preference orders such that

1. for every m40 there exists a continuous concave utility um representing 
 (i.e. x 
 y iff
um(x)4um(y); and

2. for every x, yAK with x 
 y and every sequence xm ! x, ym ! y with xm, ymAK, there exists an
M40 such that xm 
m ym for all m4M.
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Let A ¼ [Ni¼1Bi and K ¼ �N
i¼1½0;maxx[AðxiÞ	. Let { � m} be a sequence given by Lemma 2 of

Kannai (1974).
By the finiteness of N and the budgets B1, . . ., BN, there exists an m40 sufficiently large that

for all x, yAB, x 
 y ) x 
m y.
Let

d � minf½umðxÞ � umðyÞ	 : B[fB1; . . . ;BNg; x[h�ðBÞ; y[Bnh�ðBÞg;

and let C � maxf#½B	 : B[fB1; . . . ;BNgg.
Note that d must be strictly positive, and let u ¼ � (1/d)log(min(e,C� 1)/C)um. The function u

is increasing and concave and therefore regular, so by Theorem 2 there exists a unique random
demand function p represented by u that satisfies Assumptions 1, 2, 3, 4 and 5. The multiplicative
constant � (1/d)log(min(e, C� 1)/C) is finite, positive and sufficiently large that, for all BA{B1,
. . . , BN},

pBðh�ðBÞÞ ¼ 1� pBðBnh�ðBÞÞ*1� e: &
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Utility Theory, I: Principles, pp. 273–319. Dordrecht: Kluwer Academic.

GEORGESCU-ROEGEN, N. (1958). Threshold in choice and the theory of demand. Econometrica, 26,

157–68.

HALLDIN, C. (1974). The choice axiom, revealed preference, and the theory of demand. Theory and Decision, 5,

139–60.

KANNAI, Y. (1974). Approximation of convex preferences. Journal of Mathematical Economics, 1,

101–06.

LUCE, R. D. (1959). Individual Choice Behavior: A Theoretical Analysis. New York: John Wiley.

106 ECONOMICA [FEBRUARY

r The London School of Economics and Political Science 2008



FFF and SUPPES, P. (1965). Preference, utility, and subjective probability. In R. D. Luce, R. R. Bush and

E. Galanter (eds.), Handbook of Mathematical Psychology, vol. 3, pp. 249–410. New York: John Wiely.

MCCAUSLAND, W. J. (2004). Bayesian inference for a theory of random comsumer demand: the case indivisible
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