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Abstract. I introduce posterior simulation methods for a dynamic latent factor model

featuring both mean and variance factors. The cross-sectional dimension may be large,

so the methods are applicable to data-rich environments. I apply the new methods in

two empirical applications. The first involves a panel of 134 real activity and financial

indicators observed monthly from 1959 to 2015; the second, a panel of 10 currencies, with

daily log returns observed over a decade.

1. Introduction

Since their introduction by Geweke (1977), dynamic factor models have become important

tools for the analysis of macroeconomic and financial data. A great deal of the data variation5

in large macroeconomic panels can be accounted for by a small number of factors. The data

reduction that factor structure allows is a huge computational advantage for forecasting.

Dynamic factor models are commonly used in data-rich environments, where the number of

observed series (which we denote N) is in the order of one hundred or more. The number of

observation periods (T ) is usually not large, as data are collected at monthly or quarterly10

frequency, and the availability of data prior to 1960 is very limited. See surveys on dynamic

factor models by Bai and Ng (2008) and Stock and Watson (2011).

Dynamic factor models have also been applied in multivariate stochastic volatility models

for asset returns. Here, N is usually much smaller and T much larger. See for example,

Aguilar and West (2000), Chib, Omori, and Asai (2009) and Nakajima and West (2013).15

Many dynamic factor models used in macroeconomics feature constant variances. How-

ever, measures of real activity, such as production and employment, are known to vary

more in some periods than in others: the Great Moderation, for example, was a period

of relative tranquility for many such measures. Macroeconomic panels often feature asset
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prices, exchange rates and commodity prices; these financial indicators are also relevant for

macroeconomic forecasting and exhibit even greater fluctuations in volatility.

Bayesian methods for inference in dynamic factor models have many advantages. Com-

puting posterior moments of parameters and unobserved factors is an exercise in numerical

integration, and as such it is often more stable than maximizing an objective function such5

as a likelihood. Posterior simulation only requires a joint density function for all observable

and unobservable quantities, including data, latent variables and parameter values; com-

putation of a likelihood function is unnecessary. This facilitates analysis in non-linear and

non-Gaussian models. Bayesian methods allow for a formal probabilistic specification of a

priori information, such as theoretical restrictions, or regularization priors. Bayesian meth-10

ods naturally accommodate a flexible approach to parsimony: discipline can be achieved

either with a small number of parameters, or by imposing tight prior distributions on a

larger number of parameters.

The purpose of this paper is to develop posterior simulation methods for a dynamic

factor model with stochastic volatility, suitable for data-rich macroeconomic applications.15

In this model, both the mean and the variance of the observed series have a factor structure.

Since the focus of this paper is the variance factor model, we use a relatively simple mean

factor model. Mean factors follow a Gaussian first order vector autoregressive process and

the factor loadings are all contemporaneous. Factor variances and factor loadings do not

vary in time, which implies that conditional correlations between the common parts of the20

observed series do not vary in time either. With the exception of constant factor loadings,

all of these restrictive assumptions could be relaxed without too much trouble. However, it

would be more difficult to introduce time-varying factor loadings in data-rich environments

due to the explosion in the number of latent variables.

The variance factor model captures fluctuating variance of the idiosyncratic term of25

the various observed series. In previous studies, such as Del Negro and Otrok (2008),

the idiosyncratic variance of each series evolves independently according to a univariate

stochastic volatility model. Posterior simulation for such a model would be a considerable

computational burden in a data-rich environment. At the same time, we would expect some

common variation in the various idiosyncratic variances. I use a factor model to capture30

this common variation using a small number of factors.
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In order to work well with large panels, simulation methods need to be computationally

efficient. The cost of an MCMC draw should not rise very quickly in N . Gibbs sampling

effectively decouples the computation associated with the mean and variance factor models.

The computational cost of updating the mean factors and their parameters in linear in N .

The same is true of the variance factors and their parameters.5

Once we condition on variance factors and their parameters, we are left with a linear

Gaussian state space model, and we can decompose the joint Gaussian distribution of

mean factors and observed series into the conditional distribution of factors given series

and the marginal distribution of the observed series, both Gaussian. The first gives us

the conditional posterior distribution of factors, We can use the second to evaluate the10

conditional likelihood with factors integrated out; this allows us to update the conditional

posterior of the factors’ autoregressive coefficients marginally of factors.

Usually this decomposition is done by applying the Kalman filter, together with one

of the simulation smoothing procedures proposed by Carter and Kohn (1994), Frühwirth-

Schnatter (1994), de Jong and Shephard (1995) and Durbin and Koopman (2002). See, for15

example, Kim and Nelson (2000). However, the Kalman filter is computationally costly for

data rich environments, due to the need to solve a system of N equations for each of T obser-

vations. An alternative is to compute the block band precision (inverse of variance) matrix

of the conditional distribution of the factors. From there, it is easy to compute its Cholesky

factor, also a block band matrix, draw factors from their conditional posterior distribution20

using forward- and back-substitution, and evaluate the conditional posterior density of the

autoregressive coefficients with factors integrated out. All of this is accomplished using

standard operations for matrices with block band structure. Methods involving block band

matrix (or more general sparse matrix) operations have been discussed and applied in Chan

and Jeliazkov (2009), McCausland, Miller, and Pelletier (2011) and Rue (2001). McCaus-25

land, Miller, and Pelletier (2011) gives a detailed comparison of computational costs for the

Kalman filter and for block band matrix operations.

The block band matrix operations allow for computationally efficient joint draws of mean

factors and their autoregressive coefficient matrices from their conditional posterior distri-

bution. This computational efficiency does not rely on, or even benefit from, the condi-30

tional conjugacy of Gaussian priors for the autoregressive coefficient matrices. Thus free to
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choose non-conjugate priors, I normalize the distribution of means factors by setting the

unconditional—rather than the conditional—variance of the factors to a constant. The ad-

vantages here are reducing the posterior dependence between the autoregressive coefficient

matrix and the mean factor loading matrix.

Given the mean factors and their parameters, the variance factor model is multivariate5

state space model with Gaussian latent states and non-linear non-Gaussian observations.

We apply the HESSIAN method described in McCausland (2012) to draw the variance fac-

tors, one entire univariate factor series at a time. This method is based on a very close

approximation of the conditional posterior distribution of the latent factor in univariate

state space models with Gaussian latent states and non-linear non-Gaussian observations.10

I use such an approximation as a proposal distribution for each variance factors series. The

method can be applied one factor series at a time: once one conditions on all other factor

series, the k’th factor series is the unknown state of a univariate state-space model with

Gaussian latent states and non-linear non-Gaussian observations. This is true whether or

not the variance factor series are a priori mutually independent. I do not impose such15

independence; while the rotation I use to identify factors gives a time-t marginal distribu-

tion with cross-sectionally independent factors, there remains dynamic dependence across

factors.

Section 2 describes the model for observables, discusses my identification strategy and

specifies a prior distribution, up to the selection of its various hyper-parameters. Sections 320

and 4 describe Bayesian computation for the mean and variance factor models, respectively.

Section 5 reports the results of an artificial data exercise and two empirical applications.

The “Getting it Right” exercise, based on Geweke (2004), verifies the correctness of the

algorithms used and their implementation in code. The first empirical application involves

a panel of 134 real activity and financial indicators observed monthly from 1959 to 2015;25

the second, a panel of 10 currencies, with daily log returns observed over a decade. Section

6 concludes.

2. A factor model with mean and variance factors

2.1. The model. We observe yt, an N × 1 vector of dependent variables and xt, a J × 1

vector of independent variables, at times t = 1, . . . , T . The model for the dynamics of yt30

features two latent dynamic factors, a mean factor Fµt of length Kµ and a variance factor
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Fσt of length Kσ. Given the latent factors, yt evolves according to

(1) yt = µt + [diag(σ2
t )]

1/2εt,

where the conditional mean vector µt has the factor structure

(2) µt = ΛµFµt +Bµxt,

and the conditional variance vector σ2
t has the exponential factor structure

(3) σ2
t = exp(ΛσFσt +Bσxt).

Here, Λµ and Λσ are factor loading matrices, εt ∼ iid N(0, IN ), and the exponential function

is applied elementwise. The latent factor series Fµt and Fσt are first order Gaussian vector5

autoregressions:

(4) Fµt = ΦµFµ,t−1 + uµt,

(5) Fσt = ΦσFσ,t−1 + uσt,

where uµt ∼ iid N(0,Σµ) and uσt ∼ iid N(0,Σσ). The εt, uµt and uσt are mutually inde-

pendent. The same vector xt of exogenous observed variables appears in both the mean

factor (2) and variance factor (3) equations; one can always impose exclusion restrictions.10

In data-rich environments, N is much larger than Kµ and Kσ. To simplify notation, let

Fµ ≡ (F>µ,1, . . . , F
>
µ,T )>, Fσ ≡ (F>σ,1, . . . , F

>
σ,T )>, y ≡ (y>1 , . . . , y

>
T )>, θµ ≡ (Bµ,Λµ,Φµ),

θσ = (Bσ,Λσ,Φσ) and θ = (θµ, θσ).

2.2. Identification. The lack of identification in factor models is well known; there are

rotation, permutation, scale and sign transformations of factors and their parameters that15

leave the distribution of y unchanged. Here I describe my identification strategy.

Two popular normalizations of Σµ are Σµ = I and Σµ = I −ΦµΦ>µ , which set the condi-

tional and unconditional variances of Fµt, respectively, to I. The corresponding restrictions

on Φµ require that the eigenvalues of Φµ and ΦµΦ>µ , respectively, lie in the unit circle.

The Σµ = I − ΦµΦ>µ normalization is commonly used in principal components analyses.20

The Σµ = I normalization is more often used in Bayesian analyses, largely because a
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Gaussian prior distribution for Φµ is nearly conjugate for the conditional distribution of Fµ

given Φµ, and exactly conjugate if one conditions on a pre-sample Fµ,0.

Although my analysis is Bayesian, I adopt the Σµ = I − ΦµΦ>µ normalization. It has

several advantages over the Σµ = I normalization, and the advantages of the latter may be

overestimated.5

Among the advantages are: (1) It is easy to compare results of a Bayesian analysis with

the static factors and loadings given by a principal components analysis. (2) It is easy to

decompose the variance of each yti into common and idiosyncratic terms: Var[yti|θ, xt] =∑Kµ
k=1 Λ2

ik + E[σ2
ti|θ, xt]; the first term is a particularly transparent expression that does

not involve Φµ since the unconditional variance of Fµt does not depend on Φµ. (3) The10

autoregression coefficient Φµ is more easily interpreted. It is an autocorrelation matrix, and

thus invariant to units of measurement. Symmetry of Φµ is necessary and sufficient for the

time reversibility of Fµt; under the normalization Σµ = I, the time reversibility condition

is much less transparent. (4) Under the Σµ = I normalization, the unconditional variance

of Fµt is highly sensitive to Φµ near the boundary of Φµ, while under the Σµ = I − ΦµΦ>µ15

normalization, it is constant. Thus, there is less posterior dependence between Φµ and

the factor loadings Λµ, through the varying scale of factors and their loadings, and this

makes posterior simulation using Gibbs sampling more numerically efficient. (5) A principal

components analysis gives good initial values of factors and loadings, which shortens the

transient burn-in period the MCMC chain spends in regions of low posterior probability.20

The principal advantage of the Σµ = I normalization is the approximate conditional

conjugacy of a Gaussian prior for Φµ: such a prior makes the conditional posterior distri-

bution of Φµ nearly Gaussian, so that a single draw from a Gaussian proposal is almost

as good as an exact conditional draw. Under the Σµ = I − ΦµΦ>µ normalization, there

is no convenient conditionally conjugate prior distribution for Φµ, Gaussian or otherwise.25

However, the conditional density of Fµ given Φµ depends on Fµ through a low dimensional

“sufficient statistic”, and once this statistic is computed, the conditional density can be

evaluated very cheaply for each new value of Φµ. In this way, a large number of repetitions

of a simple generic MCMC update, such as random-walk Metropolis or slice sampling, can

achieve almost the same numerical efficiency as an exact conditional draw, at a cost not30

much larger than a single such update. See Appendix C for details.
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Under the Σµ = I normalization, the advantages of conjugacy are most completely

captured when the prior for Φµ is Gaussian, while under the Σµ = I−ΦµΦ>µ normalization,

there is no particular advantage in using a Gaussian prior. Thus, any advantages of a

non-Gaussian prior come at no additional cost. Section 2.3 below describes a prior that is

more flexible than a Gaussian one, especially for highly persistent factors, and incorporates5

many, though not all, of the necessary conditions on Φµ for stationarity, before truncation.

I use exactly the same normalization for Σσ and Φσ and realize most of the same advan-

tages.

I restrict Λµ and Λσ to be row-permutations of lower triangular matrices with positive

diagonal elements. This normalization is slightly more general than the usual one, in which10

factor loading matrices are lower triangular with positive diagonal elements. It affords more

flexibility on the choice of the factor founder1 series, those observed series with exclusion

restrictions in the form of loadings set to zero. Since I can (and do) choose different

permutations of the observed series to identify Λµ and Λσ, this is substantive. Section A.2

describes how I determine the factor founders. Briefly, I choose them so that the factors15

resemble the static factors obtained using principal components.

I will call the j’th mean factor founder the observed series i for which the exclusion

restriction Λµ,ik = 0, k < j, and the sign restriction Λµ,ij > 0 hold; I define the j’th

variance factor founder analogously.

2.3. Prior distributions. Here I describe prior distributions for the parameters of the20

model, up to the values of various hyper-parameters. I assign numerical values of the

hyper-parameters in Section 5. I will assume that the first exogenous variable is a constant:

xt1 = 1, t = 1, . . . , T . Thus Bµ,i1 and Bσ,i1 are the constant coefficients of the i’th mean

and variance equations, respectively.

The parameters have the conditional independence properties implied by the following25

density decomposition:

f(θ) = f(Φµ)f(Φσ)f(Bµ)f(Bσ)f(Λσ)f(Λµ|Bσ).

I choose a prior for Φµ (Φσ) that makes the Kµ (Kσ) latent factor series exchange-

able. At the same time, I want to treat diagonal elements, which are autocorrelations, and

1I believe the term “factor founder” is due to Carvalho, Chang, Lucas, Wang, and West (2008).
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off-diagonal elements, which are cross-correlations, differently, as well as ensure that the

eigenvalues of ΦµΦ>µ (ΦσΦ>σ ) are in the unit circle.

I choose a truncated prior distribution for Φµ (Φσ). Truncation is to the stationary region,

where ΦµΦ>µ (ΦσΦ>σ ) has eigenvalues in the unit circle. In the pre-truncation distribution,

the elements of Φµ (Φσ) are independent, diagonal elements are identically distributed and5

off-diagonal elements are identically distributed. The pre-truncation distributions of the

elements of Φµ and Φσ are

(Φµ,kl + 1)/2 ∼

Be(φ1, φ2) k = l,

Be(φ3, φ4) k 6= l.
(Φσ,kl + 1)/2 ∼

Be(φ5, φ6) k = l,

Be(φ7, φ8) k 6= l.

Here, Be denotes the Beta distribution. This distribution allows much more flexibility

than the Gaussian distribution for the behaviour of the prior of diagonal elements near

one. According to the value of φ2, for example, the density of Φµ,kk at one can be zero10

(φ2 > 1), finite (φ2 ≥ 1), or infinite φ2 < 1; setting φ2 > k makes the k − 1’th derivative of

the density at one equal to zero. Another advantage is that the restricted support of the

Beta distribution incorporates necessary conditions for stationarity, reducing the impact of

truncation.

The parameters Bµ and Bσ have rows that each relate to a specific observed series.15

These series may be very different types of variables, with different scales and units of

measurement, and their priors should reflect this. Suppose, for example, that series i is

an asset return series, which might be measured either as a difference of log prices or

as a percentage. The value of Bµ,i associated with the latter will be 100 times larger

than the value of Bµ,i associated with the former; the constant coefficient Bσ,i1 should20

be larger by 2 ln 100. I choose priors for Bµ and Bσ where their rows are independent

and have Gaussian distributions that are not necessarily identical. For the purpose of the

computational sections of this paper, we will specify the prior distributions of Bµ,i and Bσ

in terms of the precision H̄µ,i and covector c̄µ,i, rather than the mean and variance. Thus,

Bµ,i ∼ N(H̄−1
Bµ,i

c̄Bµ,i , H̄
−1
Bµ,i

), Bσ,i ∼ N(H̄−1
Bσ,i

c̄Bσ,i , H̄
−1
Bσ,i

).
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In the Getting it Right and Bank of Canada currency panel applications, each Bµ,i has

mean φ9 and standard deviation φ10, so that H̄µ,i = (1/φ2
10)I and c̄Bµ,i = (φ9/φ

2
10)ι, where

ι is a J-vector of ones. In the FRED-MD panel application,

The elements of Λσ are dimensionless, and so despite the fact that each pertains to a

specific series, I choose a prior that does not distinguish among series, except to accom-5

modate the exclusion and sign restrictions serving to identify Λσ. Λσ has the distribution

of a N × Kσ matrix whose elements are iid N(0, φ2
14), right-multiplied by the orthogonal

matrix that makes Λσ satisfy the identification restrictions.2 Here, φ14 is a prior scale

hyperparameter. Thus, elements of Λσ are independent, with

Λσ,ij
φ14

∼


0 i is a variance factor founder before the j’th,

χ(Kσ − j + 1) i is the j’th variance factor founder,

N(0, 1) otherwise,

where χ(ν) denotes the chi (sic; not chi-squared) distribution with ν degrees of freedom.10

Note that for each row i, with or without exclusion restrictions, φ−2
14

∑Kσ
k=1 Λ2

σ,ik ∼ χ2(Kσ),

where χ2(ν) denotes the chi-squared distribution with ν degrees of freedom.

The elements of Λµ, unlike those of Λσ, have the same units of measurement as the ob-

served series they relate to. I therefore scale the prior for each row Λµ,i by φ13 exp(Bσ,i1/2),

where Bσ,i1 is the coefficient of the constant term of the variance equation for indicator i15

and φ13 is a prior scale hyper-parameter. Otherwise, the prior for Λµ is similar to that of

Λσ. Elements of Λµ are conditionally independent given Bσ, with

exp(−Bσ,i1/2)

φ13
Λµ,ij |Bσ ∼


0 i is a mean factor founder before the j’th,

χ(Kµ − j + 1) i is the j’th mean factor founder,

N(0, 1) otherwise.

For each row i, with or without exclusion restrictions, the conditional distribution of

φ−2
13 exp(−Bσ,i1)

∑Kµ
k=1 Λ2

µ,ik given Bσ is χ2(Kµ).

2A draw of Λσ from its prior is obtained by permuting the rows of R>, where QR is the QR decompostion
of a matrix of iid Gaussian variates.
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Figure 1. Overview of posterior simulation

(1) Set (Λ
(−B−1)
µ , B

(−B−1)
µ ,Φ

(−B−1)
µ , F

(−B−1)
µ ,Λ

(−B−1)
σ , B

(−B−1)
σ ,Φ

(−B−1)
σ , F

(−B−1)
σ )

(Section A.3)
(2) For m = 1, . . . ,M , draw updates preserving the conditional posterior distributions

(a) Λµ|Bµ,Φµ, Fµ, θσ, Fσ, x, y (Section 3.1)
(b) Bµ|Λµ,Φµ, Fµ, θσ, Fσ, x, y (3.2)
(c) Φµ, Fµ|Λµ, Bµ, θσ, Fσ, x, y (3.3)

(i) Φµ|Λµ, Bµ, θσ, Fσ, x, y
(ii) Fµ|Λµ, Bµ,Φµ, θσ, Fσ, x, y

(d) Φµ|Λµ, Bµ, Fµ, θσ, Fσ, x, y (3.4)
(e) Λσ|θµ, Fµ, Bσ,Φσ, Fσ, x, y (4.1)
(f) Bσ|θµ, Fµ,Λσ,Φσ, Fσ, x, y (4.2)
(g) Φσ, Fσ|θµ, Fµ,Λσ, Bσ, x, y (4.3)

(i) Φσ|θµ, Fµ,Λσ, Bσ, x, y
(ii) Fσ|θµ, Fµ,Λσ, Bσ,Φσ, x, y

(h) Φσ|θµ, Fµ,Λσ, Bσ, Fσ, x, y (3.4)

3. Bayesian computation, mean factor model

In this section and the next, I describe Markov chain Monte Carlo methods for posterior

simulation of parameters and factors. A single step of the Markov chain consists of eight

draws, updating the Gibbs blocks Bµ, Λµ, (Φµ, Fµ), Φµ, Bσ, Λσ, (Φσ, Fσ) and Φσ. Each

update preserves the posterior distribution Bµ,Λµ,Φµ, Fµ, Bσ,Λσ,Φσ, Fσ|y, although the5

blocks (Φµ, Fµ) and (Φσ, Fσ) are joint blocks consisting of marginal and conditional parts.

Figure 1 gives an overview and directs the reader to the appropriate sections describing the

updates. For notational simplicity, I assume that yti is observed for all t and i; if any data

are missing, this can be easily accommodated, as described in Appendix A.1. Appendix

A.3 describes how the initial value of the MCMC chain is determined.10

Gibbs sampling, a divide-and-conquer approach which breaks a simulation problem into

simpler problems, neatly decouples simulation for the mean and variance factor models.

Given variance factors and their parameters, the model reduces to a mean factor model

with known but time varying variances; given mean factors and their parameters, it reduces

to a variance factor model for the residual term of the mean factor model. An important15

implication of this modularity is that the variance factor model, the central contribution

of this paper, can be paired with alternate mean factor models with no modification of the

code for the variance factor model.
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I discuss Bayesian computation in two separate sections. Here in Section 3, I describe

Gibbs blocks for the unknown quantities Bµ, Λµ, Φµ and Fµ of the mean factor model of

equations (2) and (4). In Section 4, I do the same for the unknown quantities Bσ, Λσ, Φσ

and Fσ of the variance factor model, equations (3) and (5).

To focus attention on the mean factor model, I condition on σt, t = 1, . . . , T , and suppress5

notation for this conditioning, for the rest of the section. The remainder of this section is

divided into four parts, where I discuss the Gibbs blocks Bµ, Λµ, (Φµ, Fµ) and Φµ.

3.1. Drawing Λµ. In the conditional posterior distribution of Λµ, the rows Λµ,i are condi-

tionally independent. If i is not a mean factor founder, the prior for Λµ,i is Gaussian and

therefore conditionally conjugate. In this case, the conditional posterior distribution of Λµ,i10

is N( ¯̄H−1
Λµ,i

¯̄cΛµ,i ,
¯̄H−1

Λµ,i
), where the posterior precision ¯̄HΛµ,i and covector ¯̄cΛµ,i are given by

(6) ¯̄HΛµ,i = H̄Λµ,i +

T∑
t=1

e−σ
2
tiFµ,tF

>
µ,t,

(7) ¯̄cΛµ,i = c̄Λµ,i +
T∑
t=1

e−σ
2
ti(yti −Bµ,ixt)Fµ,t.

Here H̄Λµ,i = φ−2
1 exp(−Bσ,i1)I and c̄Λµ,i = 0 are the prior precision and covector, with I

being the Kµ ×Kµ identity matrix and 0, a Kµ-vector of zeros.

If i is a mean factor founder, say the j’th, the situation is a little more complicated.15

The exclusion restriction Λµ,ik = 0, k > j, applies and the conditional posterior distribu-

tion of the non-zero elements of Λµ,i is not Gaussian, due to the non-conjugate χ prior

distribution of Λµ,ij . I draw a Metropolis-Hastings proposal Λ∗µ,i with Λ∗µ,ik = 0 for k > j

and (Λ∗µ,i1, . . . ,Λ
∗
µ,ij) ∼ N( ¯̄H−1

Λµ,i
¯̄cΛµ,i ,

¯̄H−1
Λµ,i

), where the expressions for ¯̄HΛµ,i and ¯̄cΛµ,i are

the same as above, except that the right hand side of (6) is replaced with its j × j lead-20

ing submatrix and the right hand side of (7) is replaced with its j × 1 leading subvector.

The proposal is accepted with probability min[1, R(Λµ,i,Λ
∗
µ,i)], where the Hastings ratio

R(Λµ,i,Λ
∗
µ,i) is given by

R(Λµ,i,Λ
∗
µ,i) =

( |Λ∗µ,ij |
Λµ,ij

)Kµ−j
.

Then if Λ∗µ,i is accepted and Λ∗ij < 0, multiply the following quantities by minus one: the

j’th column of Λ; Ftj , t = 1, . . . , T ; Φjk and Φkj , k 6= j. This maps a value of (Λ, F,Φ)25



12 WILLIAM J. MCCAUSLAND

outside the sign-restricted region to an observationally equivalent value inside. With enough

data and well chosen factor founders, this mapping will be rarely be needed.

3.2. Drawing Bµ. Drawing Bµ is very straightforward, as its Gaussian prior distribution is

conditionally conjugate. Its conditional posterior distribution is Gaussian, with independent

rows Bµ,i ∼ N( ¯̄H−1
Bµ,i

¯̄cBµ,i ,
¯̄H−1
Bµ,i

), where the posterior precision ¯̄HBµ,i and covector ¯̄cBµ,i are5

given by

(8) ¯̄HBµ,i = H̄Bµ,i +

T∑
t=1

e−σ
2
tixtx

>
t ,

(9) ¯̄cBµ,i = c̄Bµ,i +
T∑
t=1

e−σ
2
ti(yti − Λµ,iFµ,t)xt.

Here H̄Bµ,i = φ−2
2 I and c̄Bµ,i = (φ2/φ

2
2)ι are the prior precision and covector, and ι is a

J-vector of ones.

3.3. Drawing Φµ and Fµ. I draw Φµ and Fµ jointly from their conditional posterior10

distribution, taking advantage of the fact that the conditional posterior distribution of Fµ

is multivariate Gaussian, with a block band precision matrix. I first perform a sequence

of random walk Metropolis updates of columns of Φµ, preserving the conditional posterior

distribution Φµ|Λµ, Bµ, y—with Fµ marginalized out. I then draw Fµ from its conditional

posterior distribution Fµ|Φµ,Λµ, Bµ, y.15

Computing the Hastings ratio for the random walk Metropolis updates requires evaluating

the density f(Φµ|Λµ, Bµ, y), with Fµ integrated out. Usually, evaluating f(Φµ|Λµ, Bµ, y)

and drawing Fµ from its conditional posterior distribution are done using the Kalman

filter. Instead, I adopt the approach outlined in McCausland, Miller, and Pelletier (2011),

which involves computing the block band Cholesky factor of the negative Hessian matrix20

of log f(Fµ|Φµ,Λµ, Bµ, y). The computational advantages of this approach are outlined in

McCausland, Miller, and Pelletier (2011), and these are especially important in the case

where N is much greater than Kµ. The Kalman filter requires solving a symmetric system

of N equations at each observation t. The sparse Hessian matrix approach—see also Chan

and Jeliazkov (2009) and Rue (2001)—requires solving a symmetric system of Kµ equations25

at each observation.
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I use a sequence of random walk Metropolis steps to update Φµ. I update each column

Φµ,k multiple times, using a proposal distribution Φ∗µ,k ∼ N(Φµ,k,Ωk). WJM: what to say

about Ωk? The proposal Φ∗µ constructed by replacing row k of Φµ with Φ∗µ,k is accepted

with probability

(10) min

[
1,
f(Φ∗µ)f(y|Φ∗µ,Λµ, Bµ, x)

f(Φµ)f(y|Φµ,Λµ, Bµ, x)

]
.

For two reasons, it is quite cheap to perform several repetitions of the Φ∗µ each time. First,5

while two evaluations of f(y|Φµ,Λµ, Bµ, Fµ, x)—numerator and denominator—are required

for the first iteration, each subsequent iteration involves only one evaluation. Second, for

each evaluation after the first, one can reuse computations depending only on Λµ. These

additional evaluations have a computational cost that does not depend on N . This means

that a large number of repetitions, enough to achieve the same numerical efficiency as an10

exact conditional draw, can be performed at modest total cost.

Appendix B gives details on how to compute f(y|Φµ,Λµ, Bµ, x) and draw Fµ|Φµ,Λµ, Bµ, y.

3.4. Drawing Φµ. In this block, I draw Φµ from its conditional distribution given data

and all unknown quantities, including Fµ. The identification Var[Fµ,t|Φµ] = I means that

the factor innovation variance is I−ΦµΦ>µ , a function of Φµ. This means that the posterior15

distribution of Φµ does not closely approximate a Gaussian distribution, as it does when

the factor innovation variance is constant. Fortunately, there is a low-dimensional sufficient

statistic—a function of Fµ—for Φµ. This allows us to make a large number of extremely

cheap draws using random walk Metropolis steps. The overall result is a update of Φµ that

is nearly independent of the previous value, obtained at low total computational cost.20

Appendix C gives details.

4. Bayesian computation, variance factor model

This section discusses Bayesian computation for the variance factor model. To focus

attention on this part of the model, I condition on µt = ΛµFµt+Bµxt—and suppress notation

for this conditioning—for the rest of the section. I define ỹt = yt−µt and ỹ = (ỹ>1 , . . . , ỹ
>
T )>.25

Thus, ỹt follows a pure variance factor model.
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We can write the conditional density of ỹ as

log f(ỹ|Λσ, Bσ, Fσ, x) = −1

2

[
NT log 2π + ι>Λσ

T∑
t=1

Fσ,t + ι>Bσ

T∑
t=1

xt

+
T∑
t=1

N∑
i=1

ỹ2
ti exp(−Λσ,iFσ,t −Bσ,ixt)

]
,(11)

where Λσ,i and Bσ,i are the i’th rows of Λ and B.

4.1. Drawing Λσ. In the conditional posterior distribution of Λσ given Fσ and Bσ, rows

Λσ,i are conditionally independent. I update the Λσ,i one at a time, using a Metropolis-

Hastings transition. I first evaluate the gradient and an approximation to the Hessian of

log f(ỹ|Λσ, Bσ, Fσ, x), both with respect to Λσ,i, at the current value of Λσ,i. I then use5

these to construct a multivariate Gaussian proposal Λ∗σ,i. I then evaluate the same gradient

and approximate Hessian at Λ∗σ,i, construct the appropriate Hastings ratio, and perform a

Metropolis-Hastings accept/reject.

I now provide some details on the computations. As with the mean factor loadings, the

situation is a little more complicated when i is a factor founder, and so I begin with the10

simpler case when i is not a factor founder.

I compute the gradient and an approximation to the Hessian as follows. First, define vi

as what remains of log f(Λσ,i) + log f(ỹ|Λσ, Bσ, Fσ, x) after eliminating additive terms that

do not depend on Λσ,i:

(12) vi = −1

2

[
φ−2

5 Λσ,iΛ
>
σ,i + Λσ,i

T∑
t=1

Fσ,t +

T∑
t=1

ỹ2
ti exp(−Λσ,iFσ,t −Bσ,ixt)

]
.

The gradient and Hessian of vi with respect to Λσ,i are given by gi and Ψi:15

(13) gi ≡
∂vi

∂Λ>σ,i
= −φ−2

5 Λ>σ,i −
1

2

T∑
t=1

Fσ,t[1− ỹ2
ti exp(−Λσ,iFσ,t −Bσ,ixt)]

(14) Ψi ≡
∂2vi

∂Λσ,i∂Λ>σ,i
= −φ−2

5 I − 1

2

T∑
t=1

Fσ,tF
>
σ,tỹ

2
ti exp(−Λσ,iFσ,t −Bσ,ixt)

I compute gi and an approximation Ψ̂i = −(φ−2
5 + T/2)I to Ψi which is much faster to

compute than Ψi. The approximation is based on the fact that the conditional expectation
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of each term in the sum (14), given Φ, Λ and B—and not ỹ—is one. Using the approxima-

tion may reduce numerical efficiency, but since the approximation is incorporated into the

Hastings ratio, the update still preserves the correct conditional posterior distribution.

I draw Λ∗σ,i|Λσ,i from the proposal distribution N(Λσ,i− Ψ̂−1
i gi,−Ψ̂−1

i ), whose log density

has gradient gi and Hessian Ψ̂i. Let q(·|Λσ,i) denote the density of this distribution.5

Next, I evaluate vi and gi at Λ∗σ,i and denote these by v∗i and g∗i . Let q(·|Λ∗σ,i) be the

density of the distribution N(Λ∗σ,i − Ψ̂−1
i g∗i ,−Ψ̂−1

i ).

I accept Λ∗σ,i as the new state with probability min[1, R(Λσ,i,Λ
∗
σ,i)], where the Hastings

ratio R is given by:

R(Λσ,i,Λ
∗
σ,i) = exp(v∗i − vi)

q(Λσ,i|Λ∗σ,i)
q(Λ∗σ,i|Λσ,i)

.

Now let’s turn to the case where i is a factor founder, say the j’th. I need to add the10

term (Kσ − j) log Λσ,ij to vi to account for the scaled χ distribution of Λσ,ij and the term

(Kσ− j)/Λσ,ij to the j’th element of gi. Then, with Λ∗σ,i and g∗i interpreted as their leading

j × 1 subvectors and Ψ̂i as its leading j × j submatrix, we proceed as before to obtain a

draw Λ∗σ,i and accept or reject.

Then if Λσ,i is accepted and Λ∗σ,ij < 0, I multiply the following quantities by minus one:15

the j’th column of Λ; Fσtj , t = 1, . . . , T , Φσ,jk and Φσ,kj , k 6= j. As before, this maps a

value of (Λσ, Fσ,Φσ) outside the truncation region to an observationally equivalent value

inside.

In practice, it is helpful to limit the size of the proposal step when the term −Ψ̂−1
i gi

is very large. The acceptance probability in these cases may be so small that the MCMC20

chain gets stuck. The term is often very large during the initial burn-in period, when the

distribution of the MCMC chain is far from its invariant distribution. Let Ψ̂i = LL> be the

Cholesky decomposition of Ψ̂i. When the Euclidean length of L−1gi is greater than 2K,

I replace Ψ̂−1
i gi with (2K/‖L−1gi‖)Ψ̂−1

i gi (and similarly with L−1g∗i to preserve detailed

balance).25

4.2. Drawing Bσ. I update Bσ in a similar way as I do Λσ. In the conditional posterior

distribution of Bσ, rows Bσ,i are independent and I draw them one at a time. Mechanically,

the procedure is the same as for Λσ; only the expressions for the value, gradient and Hessian

of the log posterior density differ.
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Up to an additive term not depending on Bσ,i, the log conditional posterior density of

Bσ,i is

vi = −1

2
[Bσ,iH̄Bσ,iB

>
σ,i − 2Bσ,ic̄Bσ,i ]−

1

2
[KµBσ,i1 + φ−2

2 exp(−Bσ,i1)Λµ,iΛ
>
µ,i]

− 1

2

[
Bσ,i

T∑
t=1

xt +

T∑
t=1

ỹ2
ti exp(−Λσ,iFσ,t −Bσ,ixt)

]
.

The first term comes from f(Bσ), the second from f(Λµ|Bσ) and the third from f(ỹ|Λσ, Bσ, Fσ).

The gradient and Hessian of vi with respect to Bσ,i are given by gi and Ψi:

gi ≡
∂vi

∂B>σ,i
= −H̄Bσ,iB

>
σ,i + c̄Bσ,i −

1

2

[
T∑
t=1

xt[1− ỹ2
ti exp(−Λσ,iFσ,t −Bσ,ixt)]

]

− 1

2
[Kµ − φ−2

2 exp(−Bσ,i1)Λµ,iΛ
>
µ,i]e

(1)
1

Ψi ≡
∂2vi

∂Bσ,i∂B>σ,i
= −H̄Bσ,i −

1

2

[
T∑
t=1

xtx
>
t ỹ

2
ti exp(−Λσ,iFσ,t −Bσ,ixt)

]

+
1

2
φ−2

2 exp(−Bσ,i1)Λµ,iΛ
>
µ,iE

(1)
11 ,

where e(1) is a Kσ-vector whose only non-zero element is e
(1)
1 = 1 and E(1) is a Kσ ×Kσ

matrix whose only non-zero element is E
(11)
11 = 1.

Here I use Ψ̂i = −H̄Bσ,i − 1
2

∑T
t=1 xtx

>
t as an approximation to the Hessian matrix.

4.3. Drawing Φσ and Fσ. I update the k’th row Φσ,k of Φσ and the k’th variance factor5

series Fσ,k ≡ (Fσ,1k, . . . , Fσ,Tk), jointly, one k at a time. The proposal (Φ∗σ,k, F
∗
σ,k) consists

of a random walk proposal Φ∗σ,k ∼ N(Φσ,k,Ωk) followed by a conditional proposal of F ∗σ,k

given Φ∗σ,k. The joint proposal (Φ∗σ,k, F
∗
σ,k) is accepted or rejected as a unit. The proposal

density q(F ∗σ,k|Φ∗σ,k) is a very close approximation of the conditional posterior density of

Fσ,k given Φ∗σ,k and the current values of all other quantities, including the other factor10

series. I construct it according to the HESSIAN method described in McCausland (2012).

The HESSIAN method is a generic method for building an approximation of the con-

ditional posterior distribution of states in state space models where states are univariate

and Gaussian, but observations can be non-Gaussian, non-linear and multivariate. I can

apply it here because each factor series, together with ỹ, becomes such a state space model15

when we condition on all the other factor series. What this means, more precisely, is that
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the Hessian matrix of ln f(Fσ,k|F−k, ỹ,Λ, B,Φ)—where F−k denotes all factors except the

k’th—is tri-diagonal and the diagonal elements do not depend on ỹ.

To apply the HESSIAN method, I need to supply inputs specifying the conditional Gauss-

ian factor distribution Fσ,k|F−k,Φ and the measurement distribution ỹ|F,Λ, B. To specify

the factor distribution, I need to provide its tridiagonal precision matrix Hk and its cov-5

ector ck. To specify the measurement distribution ỹ|F,Λ, B, I need to supply (routines to

perform) multiple derivatives of log f(ỹt|F,Λ, B) with respect to Ftk, for t = 1, . . . , T . We

spend the rest of this Section 4.3 doing both.

First, we find the precision and covector of the conditional factor distribution Fσ,k|F−k,Φ.

The conditional distribution of F given Φ is Gaussian, with mean zero and block band10

precision

H ≡


I −Φ>

I
. . .

. . . −Φ>

I




I

I − ΦΦ>

. . .

I − ΦΦ>



−1 
I

−Φ I

. . .
. . .

−Φ I

 .

The derivation of this is very similar to the derivation in Appendix B. The matrix H has

T × T blocks, each of dimension K ×K. The non-zero blocks are

H11 = I + Φ>(I − ΦΦ>)−1Φ, Hnn = (I − ΦΦ>)−1,

Htt = (I − ΦΦ>)−1 + Φ>(I − ΦΦ>)−1Φ, t = 2, . . . , n− 1,
15

Ht,t−1 = −(I − ΦΦ>)−1Φ, t = 2, . . . , n.

Now I specify the conditional distribution Fσ,k|F−k,Φ ∼ N(H−1
k ck, H

−1
k ). The non-zero

elements of the T × T conditional precision matrix Hk and the T × 1 covector ck are

Hk,11 = (H11)kk, Hk,TT = (HTT )kk,

Hk,tt = (Htt)kk, t = 2, . . . , n− 1,

Hk,t,t−1 = (Ht,t−1)kk, t = 2, . . . , n,
20

ck,1 =
∑
l 6=k

(Htt)klFtl + (Ht+1,t)lkFt+1,l, ck,n =
∑
l 6=k

(Htt)klFtl + (Ht,t−1)klFt−1,l
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ck,t =
∑
l 6=k

(Htt)klFtl + (Ht,t−1)klFt−1,l + (Ht+1,t)lkFt+1,l, t = 2, . . . , n− 1.

We now turn to the specification of the measurement distribution ỹt|Ft, xt. We need to

supply code to evaluate multiple derivatives of ψ(Ft) ≡ log f(ỹt|Ft, xt) with respect to Ftk,

at any point Ftk. For t = 1, . . . , T ,

ỹt|F, x ∼ N

0,


exp(Λ1Ft +B1xt) 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 exp(ΛNFt +BNxt)



 .

Therefore5

(15) ψ(Ft) = −N
2

log 2π − 1

2

N∑
i=1

(Λσ,iFt +Bσ,ixt)−
1

2

N∑
i=1

ỹ2
ti exp(−Λσ,iFt −Bσ,ixt),

and we compute

(16)
∂ψ(Ft)

∂Ftk
= −1

2

N∑
i=1

Λik +
1

2

N∑
i=1

ỹ2
ti exp(−Λσ,iFt −Bσ,ixt)Λik,

(17)
∂nψ(Ft)

∂Fntk
=

(−1)n+1

2

N∑
i=1

ỹ2
ti exp(−Λσ,iFt −Bσ,ixt)Λnik, n = 1, 2, . . .

Using the HESSIAN method, we need to evaluate derivatives of ψ(Ft) with respect to

Ftk many times, so it is helpful to pre-compute quantities not depending on the Ftk. For

any k, write10

N∑
i=1

ỹ2
ti exp(−Λσ,iFt −Bσ,ixt) =

N∑
i=1

ỹ2
ti exp

− K∑
l=1,l 6=k

ΛilFtl −Bσ,ixt

 exp(−ΛikFtk)

and then define

cti(k) ≡ ỹ2
ti exp

− K∑
l=1,l 6=k

ΛilFtl −Bσ,ixt

 .
Pre-computing the cti(k), for i = 1, . . . , N and t = 1, . . . , T before applying the HESSIAN

method to draw Fσ,k allows for computationally efficient code.
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Hyper-parameters Description GIR FRED-FM BofC
(φ1, φ2) Φµ diagonal, Beta shape (200, 200) (4, 2) (200, 200)
(φ3, φ4) Φµ off-diagonal, Beta shape (200, 200) (20, 20) (200, 200)
(φ5, φ6) Φσ diagonal, Beta shape (18, 2) (10.5, 1.5) (18, 2)
(φ7, φ8) Φσ off-diagonal, Beta shape (50, 50) (50, 50) (50, 50)
(φ9, φ10) Bµ, Gaussian mean, std (0, 0.01) (see below) (0, 0.001)
(φ11, φ12) Bσ, Gaussian mean, std (−11, 0.1) (see below) (−11, 1)

φ13 Λµ, Gaussian std 0.5 1.0 2.0
φ14 Λσ, Gaussian std 0.1 0.4 0.4

Table 1. Prior hyper-parameter values used in Getting It Right (GIR),
FRED-MD panel and Bank of Canada panel applications.

Description E[Bµ,i] sd[Bµ,i] E[Bµ,i] sd[Bµ,i]
Real production, income or consumption, ∆ log ln 10−5 ln 10 0.002 0.002
Institute for Supply Management index 1

2 ln 10 ln 10 50 10
Numbers employed, ∆ log ln 10−5 ln 10 0.001 0.001
Numbers unemployed, ∆ log ln 10−2 ln 10 0.001 0.001
Housing starts and permits, ∆ log ln 10−2 ln 10 0.001 0.001
Price index, ∆2 log ln 10−5 ln 10 0 10−6

Money and Credit aggregates, ∆2 log ln 10−5 ln 10 0 10−6

Nominal Interest rates and yields, ∆ ln 10−1 ln 10 0 10−6

Nominal Interest rate spreads ln 10−2 ln 10 1 1
Nominal and Real Exchange rates, ∆ log ln 10−4 ln 10 0 10−4

Hourly Earnings, ∆2 log ln 10−5 ln 10 0 10−6

Asset price, ∆ log ln 10−4 ln 10 0.002 0.002
Price index, materials and commodities, ∆2 log ln 10−4 ln 10 0 10−6

Hours, ∆ ln 10−1 ln 10 0 10−4

Miscellaneous, low error ln 10−4 ln 100 0 0.001
Miscellaneous, high error ln 1 ln 100 0 0.1

Table 2. Prior hyper-parameter values used in FRED-MD panel analysis

5. Results

Here I report results from an artificial data exercise designed to test the algorithms used,

and two empirical applications. The first empirical application uses data from a panel of

macroeconomic indicators. The second analyses data from a panel of currency returns.

Tables 1 and 2 give numerical values for the various hyper-parameters used in the three5

simulations.

5.1. Getting it right. Here I describe a simulation whose sole purpose is to test the

correctness of the posterior simulation methods. This is a purely pre-data exercise, involving
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only artificial data. The tests described here are similar to those described in Geweke

(2004). We draw a sample from the joint distribution of parameters, latent factors and

data, using the simulation methods described in Sections 3 and 4. If the posterior simulation

methods are conceptually sound and correctly implemented, then the marginal distribution

of the parameters in the sample is the same as their prior distribution. This is a testable5

implication of program correctness.

I set the dimension parameters N = 3, J = 1, Kµ = Kσ = 2 and T = 10. These values

are very small, to avoid excessive serial dependence in the sample and to obtain a very

large sample in reasonable time, but sufficiently large to test the correctness of our code.

The exogenous series xt is a constant: xt = 1 for t = 1, . . . , T . Hyper-parameter values are10

shown in Table 1. I generate a posterior sample of size of M = 4 × 106 and for analysis, I

use a subsample of size 100000 consisting of every 40’th draw.

The sample is the output of a Markov chain whose invariant distribution is the joint

distribution of parameters, latent factors and data. This Markov chain is a Gibbs sampler,

consisting of exactly the same blocks used for posterior simulation, described in Sections15

3 and 4, plus an additional block, updating data y from its conditional distribution given

all parameters and both factor series. The additional block simply involves simulating data

from the model.

Table 3 shows the results for various parameters. The second, third and fourth columns

give the population and sample mean of the parameter and a numerical standard error for20

the sample mean. The fifth and sixth columns give the population and sample mean of

the squared difference between the parameter and its true population mean. The seventh

column gives a numerical standard error of the latter sample mean. Numerical standard

errors are computed using the R package coda, which uses a time series method.

Sample means and variances are close to true prior means and variances, measured in25

terms of numerical standard error, except for the parameters Φσkl, where the given “true”

prior means and variances are pre-truncation and the simulated values come from the trun-

cated distribution.

Tables 4 and 5 show results for the mean and variance factor series, respectively. Recall

that the marginal distribution of all factors is standard Gaussian. Each row corresponds30

to a time period. The first and second columns of Table 4 give the sample mean of Fµ,t1
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µ ≡ E[x] x̄ σ̂nse,µ Var[x] (x− µ)2 σ̂nse,σ2

Λµ,11 0.62666 6.278e-01 6.9e-04 1.073e-01 1.082e-01 3.4e-04
Λµ,21 0.00000 -1.158e-03 1.1e-03 2.500e-01 2.502e-01 7.3e-04
Λµ,22 0.39894 3.988e-01 6.1e-04 9.085e-02 9.117e-02 3.2e-04
Λµ,31 0.00000 -2.363e-04 1.0e-03 2.500e-01 2.493e-01 7.2e-04
Λµ,32 0.00000 -9.767e-04 1.0e-03 2.500e-01 2.507e-01 7.2e-04
Bµ,11 0.00000 1.907e-04 1.1e-04 1.000e-04 9.895e-05 2.8e-07
Bµ,21 0.00000 -5.488e-05 1.1e-04 1.000e-04 9.986e-05 2.8e-07
Bµ,31 0.00000 -6.607e-05 1.1e-04 1.000e-04 9.832e-05 2.8e-07
Φµ,11 0.00000 -3.525e-04 1.0e-04 2.494e-03 2.503e-03 7.2e-06
Φµ,12 0.00000 -6.996e-05 1.0e-04 2.494e-03 2.494e-03 7.1e-06
Φµ,21 0.00000 -1.279e-04 1.0e-04 2.494e-03 2.490e-03 7.1e-06
Φµ,22 0.00000 -1.070e-04 1.0e-04 2.494e-03 2.500e-03 7.1e-06
Λσ,11 0.12533 1.253e-01 1.4e-04 4.292e-03 4.299e-03 1.5e-05
Λσ,21 0.00000 -1.073e-04 2.0e-04 1.000e-02 9.984e-03 2.8e-05
Λσ,22 0.07979 7.986e-02 1.2e-04 3.634e-03 3.643e-03 1.2e-05
Λσ,31 0.00000 -8.351e-05 2.0e-04 1.000e-02 9.999e-03 2.8e-05
Λσ,32 0.00000 1.363e-04 2.0e-04 1.000e-02 9.969e-03 2.8e-05
Bσ,11 -11.00000 -1.100e+01 2.0e-04 1.000e-02 1.002e-02 2.8e-05
Bσ,21 -11.00000 -1.100e+01 2.0e-04 1.000e-02 9.956e-03 2.9e-05
Bσ,31 -11.00000 -1.100e+01 2.0e-04 1.000e-02 1.001e-02 2.9e-05
Φσ,11 0.80000 7.904e-01 5.1e-04 1.714e-02 1.712e-02 8.0e-05
Φσ,12 0.00000 -2.125e-05 1.9e-04 9.901e-03 8.829e-03 3.3e-05
Φσ,21 0.00000 -2.852e-05 1.9e-04 9.901e-03 8.828e-03 3.2e-05
Φσ,22 0.80000 7.892e-01 5.0e-04 1.714e-02 1.717e-02 7.9e-05

Table 3. Sample and population means and variances in “Getting it right” experiment

and a numerical standard error for this sample mean. The third and fourth columns give

the sample mean of F 2
µ,t1 and a numerical standard error. The fifth through eighth columns

show the same information as the first four columns, for the second factor series, Ft2. Table

5 shows the same information as Table 4, for the variance factor series. Again, sample means

and variances are close to true prior means and variances, measured in terms of numerical5

standard error.

5.2. An application to a panel of macroeconomic and financial data. Here I analyse

a panel of 134 U.S. macroeconomic and financial indicators, observed monthly from January

1959 to January 2015. The data are from the FRED-MD database described by McCracken

and Ng (2014). I transform the data as described in that paper, obtaining an unbalanced10

panel with N = 134 indicators and T = 670 observation periods. I also transform the data

so that the sample mean and variance of each series are zero and one.
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Fµ,t1 nse, Fµ,t1 F 2
µ,t1 nse, F 2

µ,t1 Fµ,t2 nse, Fµ,t2 F 2
µ,t2 nse, F 2

µ,t2

1 0.0020 0.0012 1.000 0.0017 -0.0028 0.0017 0.999 0.0014
2 0.0025 0.0013 0.999 0.0014 0.0006 0.0013 1.000 0.0013
3 0.0025 0.0013 1.001 0.0015 -0.0008 0.0011 0.998 0.0016
4 -0.0001 0.0013 1.001 0.0019 0.0006 0.0012 1.002 0.0016
5 -0.0012 0.0017 1.000 0.0017 0.0000 0.0012 0.999 0.0013
6 -0.0006 0.0014 0.999 0.0016 0.0006 0.0010 0.997 0.0012
7 -0.0010 0.0013 0.997 0.0019 0.0007 0.0010 0.998 0.0016
8 0.0011 0.0019 0.999 0.0014 -0.0012 0.0013 1.000 0.0016
9 0.0002 0.0013 1.001 0.0019 -0.0002 0.0010 1.002 0.0020

10 0.0010 0.0011 1.001 0.0017 -0.0003 0.0009 1.000 0.0014
Table 4. Getting it right: moments of mean factors

Fσ,t1 nse, Fσ,t1 F 2
σ,t1 nse, F 2

σ,t1 Fσ,t2 nse, Fσ,t2 F 2
σ,t2 nse, F 2

σ,t2

1 0.0024 0.0012 0.999 0.0013 0.0008 0.0010 1.000 0.0014
2 0.0028 0.0015 1.000 0.0016 -0.0003 0.0011 0.999 0.0019
3 0.0027 0.0011 1.000 0.0015 -0.0000 0.0010 1.000 0.0020
4 0.0022 0.0012 0.999 0.0011 -0.0009 0.0010 1.002 0.0014
5 0.0011 0.0012 0.998 0.0009 -0.0002 0.0010 1.001 0.0013
6 0.0014 0.0012 0.997 0.0012 -0.0005 0.0009 1.001 0.0009
7 0.0009 0.0009 1.000 0.0013 -0.0005 0.0009 1.000 0.0008
8 0.0003 0.0008 1.000 0.0015 -0.0000 0.0010 0.998 0.0014
9 -0.0009 0.0010 1.000 0.0015 0.0014 0.0009 0.999 0.0012

10 0.0007 0.0011 1.000 0.0014 0.0005 0.0009 1.000 0.0012
Table 5. Getting it right: moments of variance factors

Table 6 shows the posterior mean of mean factor loadings for the 40 indicators i with the

largest sums
∑Kµ

k=1 Λ2
µ,ik. The sum is given in the first column of the table. Table 7 shows

the posterior mean of variance factor loadings for the 40 indicators i with the largest sums∑Kσ
k=1 Λ2

σ,ik.

Table 8 shows the posterior mean, the posterior standard deviation, the numerical stan-5

dard error and the relative numerical efficiency of the elements of Φµ. Each of the four

panels shows a 7× 7 array of values, corresponding elementwise to the matrix Φµ. Table 9

shows the same information for the Φσ matrix.

Figures 2, 3, 4, 5, 6, 7 and 8 show time series plots pertaining to the mean factors 1

through 7. The upper panel of these figures shows the posterior mean as a function of t.10

The lower panel shows the posterior standard deviation and the numerical standard error

for the mean. Figures 9 and 10 show time series plots for the two variance factors. Again,
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the upper panel shows the posterior mean and the lower panel shows the posterior standard

deviation and the numerical standard error for the mean.

var Lµ,i1 Lµ,i2 Lµ,i3 Lµ,i4 Lµ,i5 Lµ,i6 Lµ,i7
S and P 500 0.011 0.002 0.004 0.002 0.014 0.010 0.000 0.956

S and P: indust 0.011 0.003 0.003 0.005 0.008 0.010 0.000 0.960
NAPM 0.016 0.478 0.001 0.000 0.009 0.493 0.001 0.002

IPFPNSS 0.019 0.355 0.002 0.000 0.003 0.010 0.612 0.000
AAAFFM 0.021 0.002 0.976 0.000 0.000 0.001 0.000 0.000

TB6MS 0.025 0.037 0.008 0.000 0.923 0.006 0.000 0.000
PAYEMS 0.027 0.923 0.008 0.001 0.000 0.031 0.009 0.000

GS1 0.028 0.032 0.006 0.001 0.933 0.001 0.000 0.000
T10YFFM 0.031 0.005 0.961 0.000 0.002 0.002 0.000 0.000
BAAFFM 0.033 0.017 0.950 0.000 0.000 0.000 0.000 0.000
IPFINAL 0.033 0.276 0.001 0.001 0.002 0.008 0.679 0.000

CUSR0000SAC 0.082 0.000 0.000 0.918 0.000 0.000 0.000 0.000
T5YFFM 0.088 0.008 0.897 0.000 0.006 0.001 0.000 0.000
INDPRO 0.095 0.446 0.008 0.000 0.006 0.002 0.443 0.000

DNDGRG3M086SBEA 0.097 0.000 0.000 0.902 0.000 0.000 0.000 0.000
TB3MS 0.098 0.037 0.012 0.000 0.838 0.013 0.000 0.002

CUSR0000SA0L5 0.100 0.000 0.000 0.899 0.000 0.000 0.000 0.000
CPIAUCSL 0.100 0.000 0.001 0.898 0.000 0.001 0.000 0.000

NAPMPI 0.110 0.432 0.042 0.000 0.012 0.394 0.003 0.007
S and P div yield 0.111 0.000 0.009 0.001 0.026 0.015 0.000 0.839

SRVPRD 0.114 0.763 0.022 0.002 0.001 0.076 0.021 0.000
IPMANSICS 0.126 0.458 0.010 0.000 0.005 0.005 0.395 0.000

NAPMNOI 0.137 0.405 0.061 0.001 0.019 0.357 0.009 0.012
IPCONGD 0.138 0.145 0.006 0.000 0.003 0.024 0.685 0.000
CPIULFSL 0.142 0.000 0.000 0.857 0.000 0.000 0.000 0.001

CP3M 0.142 0.057 0.016 0.001 0.769 0.013 0.000 0.002
USGOOD 0.167 0.833 0.000 0.000 0.000 0.000 0.000 0.000

CAPUTLB00004S 0.168 0.361 0.053 0.000 0.008 0.000 0.411 0.000
NAPMEI 0.172 0.423 0.004 0.000 0.007 0.395 0.000 0.000

S and P PE ratio 0.193 0.000 0.016 0.000 0.014 0.020 0.000 0.757
CPITRNSL 0.198 0.000 0.000 0.801 0.000 0.000 0.000 0.000
MANEMP 0.206 0.767 0.001 0.000 0.000 0.020 0.005 0.000

PCEPI 0.215 0.000 0.000 0.783 0.000 0.001 0.000 0.000
GS5 0.219 0.021 0.007 0.005 0.748 0.000 0.000 0.000

DMANEMP 0.236 0.725 0.002 0.001 0.001 0.030 0.006 0.000
USTPU 0.249 0.695 0.011 0.003 0.000 0.013 0.028 0.000

CUUR0000SA0L2 0.294 0.000 0.000 0.706 0.000 0.000 0.000 0.000
NAPMSDI 0.318 0.186 0.012 0.000 0.007 0.474 0.000 0.003

GS10 0.342 0.017 0.008 0.008 0.625 0.000 0.000 0.000
IPBUSEQ 0.349 0.345 0.001 0.003 0.000 0.002 0.299 0.001

Table 6. FRED panel, posterior mean of mean factor loadings for indicators
with large mean factor loadings



24 WILLIAM J. MCCAUSLAND

var Lσ,i1 Lσ,i2
EXUSUK 2.490 -0.421 1.521
EXSZUS 2.397 -0.330 1.513
EXJPUS 2.186 -0.471 1.401
TB6MS 1.831 1.325 0.274

PAYEMS 1.824 1.337 -0.188
S and P PE ratio 1.498 -0.149 1.215

COMPAPFF 1.301 1.141 0.000
CP3M 1.264 1.042 0.422

FEDFUNDS 1.251 1.103 0.187
T5YFFM 1.226 -0.171 1.094

S and P 500 1.165 -0.075 1.077
CUSR0000SA0L5 1.126 0.913 -0.541

TB3MS 1.099 0.964 0.413
SRVPRD 1.085 1.035 -0.116

T10YFFM 1.076 -0.048 1.036
CPIULFSL 1.070 0.872 -0.556

TB6SMFFM 0.996 0.991 0.121
TB3SMFFM 0.935 0.962 0.093

S and P div yield 0.884 0.181 0.923
CPIAUCSL 0.863 0.871 -0.322

AMBSL 0.839 -0.200 0.894
INDPRO 0.786 0.882 0.089

RPI 0.766 0.446 0.753
CUSR0000SAS 0.757 0.815 -0.304

NAPMSDI 0.750 0.856 -0.131
IPMAT 0.732 0.855 -0.014

DMANEMP 0.728 0.853 -0.009
W875RX1 0.715 0.217 0.817
AAAFFM 0.675 0.791 -0.222

MZMSL 0.653 0.310 0.747
IPDMAT 0.647 0.797 -0.105
USCONS 0.641 0.758 -0.260

GS10 0.636 -0.018 0.797
DTCOLNVHFNM 0.629 -0.362 0.706

T1YFFM 0.616 0.716 0.320
CES2000000008 0.599 0.731 -0.255

BAA 0.583 -0.024 0.763
S and P: indust 0.578 -0.297 0.700

USGOOD 0.576 0.751 0.113
BAAFFM 0.575 0.723 -0.230

Table 7. FRED panel, posterior mean of variance factor loadings for indi-
cators with large variance factor loadings



DYNAMIC FACTOR MODELS WITH STOCHASTIC VOLATILITY 25

i/j 1 2 3 4 5 6 7
1 0.765 0.054 0.040 0.064 0.127 -0.016 0.067
2 -0.059 0.967 0.013 -0.092 -0.022 -0.004 -0.022
3 -0.014 0.006 -0.214 0.011 0.001 0.001 0.146
4 0.025 0.085 0.115 0.333 -0.067 -0.043 0.142
5 0.262 0.036 -0.016 0.066 0.714 0.104 0.008
6 -0.093 0.020 0.002 0.070 0.027 -0.121 -0.007
7 -0.007 0.029 -0.080 -0.108 -0.055 -0.021 0.219
1 0.026 0.018 0.033 0.028 0.028 0.032 0.026
2 0.017 0.004 0.015 0.014 0.014 0.014 0.012
3 0.033 0.015 0.043 0.041 0.045 0.043 0.036
4 0.028 0.014 0.039 0.039 0.040 0.041 0.034
5 0.027 0.019 0.046 0.040 0.042 0.038 0.031
6 0.030 0.015 0.042 0.040 0.040 0.045 0.038
7 0.025 0.011 0.038 0.035 0.031 0.038 0.034
1 0.001 0.001 0.001 0.001 0.001 0.001 0.001
2 0.002 0.000 0.000 0.001 0.001 0.000 0.001
3 0.001 0.000 0.001 0.001 0.001 0.001 0.001
4 0.001 0.001 0.001 0.001 0.002 0.001 0.001
5 0.001 0.002 0.001 0.002 0.002 0.001 0.001
6 0.001 0.001 0.001 0.001 0.001 0.001 0.001
7 0.001 0.000 0.001 0.001 0.001 0.001 0.001
1 0.179 0.070 0.461 0.766 0.377 0.534 0.816
2 0.064 0.128 0.631 0.259 0.120 0.993 0.262
3 0.554 0.572 0.972 0.504 0.524 0.888 0.671
4 0.412 0.309 0.859 0.699 0.358 0.812 0.657
5 0.292 0.070 0.715 0.272 0.190 0.411 0.455
6 0.709 0.250 0.879 0.703 0.438 0.728 0.503
7 0.750 0.686 0.655 0.591 0.737 0.491 0.778

Table 8. FRED panel, posterior mean and standard deviation, numerical
standard error and relative numerical efficiency of Φµ, elementwise

5.3. An application to daily exchange rates. This section provides an analysis of a

panel of daily log returns of 10 currencies relative to the US dollar: the Australian Dollar

(AUD), Brazilian Real (BRL), Euro (EUR), Japanese Yen (JPY), Mexican Peso (MXN),

New Zealand Dollar (NZD), Singapore Dollar (SGD), Swiss Franc (CHF), British Pound

(GBP), and Canadian Dollar (CAD). The sample covers the period from July 8, 2005 to5

July 8, 2015 We use noon spot rates of the 10 currencies and the US dollar, denominated

in Canadian dollars, obtained from the Bank of Canada. We compute the log returns of

the exchange rates and remove returns for those days when one or more of the markets was

closed, giving 2505 observations for each return series.
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i/j 1 2
1 0.785 -0.063
2 -0.067 0.832
1 0.019 0.019
2 0.018 0.018
1 0.001 0.001
2 0.001 0.001
1 0.306 0.266
2 0.371 0.162

Table 9. FRED panel, posterior mean and standard deviation, numerical
standard error and relative numerical efficiency of Φσ, elementwise

Figure 2. FRED panel, mean factor 1. Upper panel: posterior mean of
Fµ,t1, against t; Lower panel: posterior standard deviation of Fµ,t1 and nu-
merical standard error for the posterior mean
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Table 10 shows some summary statistics for the ten currency series. Table 11 show the

sample correlations among them.
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Figure 3. FRED panel, mean factor 2. Upper panel: posterior mean of
Fµ,t2, against t; Lower panel: posterior standard deviation of Fµ,t2 and nu-
merical standard error for the posterior mean
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Mean SD log variance squared return autocorrelation
AUD 1.91e-06 9.11e-03 -9.40 0.27
BRL -1.24e-04 1.02e-02 -9.16 0.40
EUR -2.99e-05 6.36e-03 -10.12 0.05
JPY -2.88e-05 6.62e-03 -10.03 0.10

MXN -1.54e-04 7.16e-03 -9.88 0.54
NZD 1.14e-06 9.22e-03 -9.37 0.12
SGD 9.20e-05 3.57e-03 -11.27 0.11
CHF 1.28e-04 7.52e-03 -9.78 0.13
GBP -4.90e-05 6.16e-03 -10.18 0.12
CAD -1.65e-05 6.38e-03 -10.11 0.13

Table 10. Summary statistics for Bank of Canada currency panel
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Figure 4. FRED panel, mean factor 3. Upper panel: posterior mean of
Fµ,t3, against t; Lower panel: posterior standard deviation of Fµ,t3 and nu-
merical standard error for the posterior mean
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AUD BRL EUR JPY MXN NZD SGD CHF GBP CAD
AUD 1.00 0.59 0.60 -0.07 0.60 0.84 0.65 0.37 0.59 0.68
BRL 0.59 1.00 0.39 -0.15 0.66 0.50 0.46 0.19 0.38 0.50
EUR 0.60 0.39 1.00 0.21 0.39 0.59 0.65 0.70 0.66 0.53
JPY -0.07 -0.15 0.21 1.00 -0.16 -0.04 0.18 0.36 0.07 -0.08

MXN 0.60 0.66 0.39 -0.16 1.00 0.52 0.50 0.19 0.39 0.53
NZD 0.84 0.50 0.59 -0.04 0.52 1.00 0.61 0.38 0.58 0.62
SGD 0.65 0.46 0.65 0.18 0.50 0.61 1.00 0.47 0.53 0.55
CHF 0.37 0.19 0.70 0.36 0.19 0.38 0.47 1.00 0.45 0.32
GBP 0.59 0.38 0.66 0.07 0.39 0.58 0.53 0.45 1.00 0.52
CAD 0.68 0.50 0.53 -0.08 0.53 0.62 0.55 0.32 0.52 1.00
Table 11. Sample correlation matrix for Bank of Canada currency panel
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Figure 5. FRED panel, mean factor 4. Upper panel: posterior mean of
Fµ,t4, against t; Lower panel: posterior standard deviation of Fµ,t4 and nu-
merical standard error for the posterior mean
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I simulate the posterior distribution for a model with Kµ = 2 mean factors and Kσ = 2

variance factors. I draw a posterior sample of size 20100, drop the first 100 draws and keep

every 10th draw, for a sample of 2000 retained draws.

Tables 12 through 15 show simulation consistent approximations of the posterior mean

and standard deviation of various parameter values. They also report numerical standard5

errors for the posterior mean, which measure simulation noise associated with the reported

approximation of the posterior mean. We use the R package coda to compute numerical

standard errors, which uses a time series method.

Figures 11 and 12 plot approximations of the posterior mean and standard deviation of

the mean factors Fµ,t1 and Fµ,t2 as a function of the observation time t. They also show10
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Figure 6. FRED panel, mean factor 5. Upper panel: posterior mean of
Fµ,t5, against t; Lower panel: posterior standard deviation of Fµ,t5 and nu-
merical standard error for the posterior mean
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the numerical standard error of the posterior mean approximation. Figures 13 and 14 do

the same for the variance factors Fσ,t1 and Fσ,t2. Bank of Canada

Not surprising for returns data, the mean factors have low persistence (and therefore

low predictability), although the diagonal autoregressive coefficient for the second mean

factor is greater than zero with very high posterior probability: its posterior mean, 0.061,5

while close to zero, is nearly three posterior standard deviations from zero. The factors

are identified by the exclusion restriction that the factor loading of the Euro on the second

factor is zero. The Euro and the Swiss Franc have particularly high factor loadings on the

first factor, and the Mexican Peso and the Brazilian Real have the lowest loadings on this
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Figure 7. FRED panel, mean factor 6. Upper panel: posterior mean of
Fµ,t6, against t; Lower panel: posterior standard deviation of Fµ,t6 and nu-
merical standard error for the posterior mean
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factor. On the second factor, the Australian and New Zealand dollars and the Real have

the highest loadings and the Yen has the lowest.

The variance factors are much more persistent, with the second factor being much more

persistent than the first. The Australian dollar and Swiss Franc have high loadings on the

first variance factor; the Real and Singapore dollar have low loadings. On the second, highly5

persistent factor, the Real, Singapore dollar and Peso have high loadings and the Pound

Sterling and Canadian dollar have low loadings.

The constant terms Bσ,i in the volatility have posterior means that are much lower than

the corresponding log sample variances in Table 10. This is an indication that the factors

are capturing much of the variation in returns.10
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Figure 8. FRED panel, mean factor 7. Upper panel: posterior mean of
Fµ,t7, against t; Lower panel: posterior standard deviation of Fµ,t7 and nu-
merical standard error for the posterior mean
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6. Conclusions

I have provided posterior simulation methods for a factor model with both mean and

variance factors. These methods are particularly well suited to data-rich environments,

where N is large, because they use block band matrix operations, rather than the Kalman

filter, to draw factors, and to integrate them out. The Kalman filter requires solving T5

systems of N equations; the block band matrix operations involve solving T systems of K

equations, where K is the number of factors.

Adding variance factors helps account for the changing volatility of macroeconomic and

financial variables, such as seen before, during and after the Great Moderation. In data-

rich environments, the dimension reduction achieved using mean factor models has proved10
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Figure 9. FRED panel, variance factor 1. Upper panel: posterior mean
of Fσ,t1, against t; Lower panel: posterior standard deviation of Fσ,t1 and
numerical standard error for the posterior mean
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extremely useful. It is natural to do the same thing for variances using a variance factor

model, using a small number of factors to account for common variation in idiosyncratic

variances across many different series.

My methods do not require variance factors to be a priori independent. In the application

using the FRED macroeconomic panel, I find strong evidence against the independence5

of the variance factors; off diagonal elements of the first order autocorrelation matrix of

variance factors are positive with very high posterior probability.

Computation for the mean and variance factor models are easily decoupled using Gibbs

sampling. In the mean factor model, factors and observed values are jointly Gaussian, with a

block band precision matrix, and so block band matrix techniques can be applied fairly easily10
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Figure 10. FRED panel, variance factor 2. Upper panel: posterior mean
of Fσ,t2, against t; Lower panel: posterior standard deviation of Fσ,t2 and
numerical standard error for the posterior mean
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to update the mean factors Fµ. I also use these techniques to integrate out Fµ analytically,

and draw the VAR coefficient matrix Φµ from its conditional posterior distribution given all

unknowns except Fµ. While this distribution is not a known distribution, generic methods

such as random walk Metropolis or slice sampling are computationally cheap to apply

multiple times, with the marginal cost of additional iterations not depending on N . All5

this allows us to perform joint draws of Φµ and Fµ from their joint conditional posterior

distribution that are computationally efficient in two ways: computations are linear in N ,

and the dependence between the old (Φµ, Fµ) state and the updated state (Φ′µ, F
′
µ) is weak.

The variance factor model has Gaussian factors, but a non-linear and non-Gaussian mea-

surement equation of high dimension. However, while the conditional posterior distribution10
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E[Λµ,i1|y] σ[Λµ,i1|y] σ̂nse,i1 E[Λµ,i2|y] σ[Λµ,i2|y] σ̂nse,i2

AUD 7.25e-03 1.41e-04 2.96e-06 0.00e+00 0.00e+00 0.00e+00
BRL 4.91e-03 1.77e-04 3.39e-06 -2.23e-03 1.89e-04 4.79e-06
EUR 3.92e-03 1.19e-04 2.77e-06 2.49e-03 1.59e-04 6.60e-06
JPY 8.35e-04 1.40e-04 2.45e-06 3.07e-03 1.38e-04 2.42e-06

MXN 3.84e-03 1.27e-04 2.57e-06 -1.88e-03 1.39e-04 3.33e-06
NZD 7.21e-03 1.61e-04 3.03e-06 6.43e-05 1.19e-04 1.98e-06
SGD 2.57e-03 6.61e-05 1.36e-06 3.08e-04 5.91e-05 1.41e-06
CHF 3.58e-03 1.29e-04 2.96e-06 3.53e-03 1.56e-04 6.61e-06
GBP 3.53e-03 1.16e-04 2.26e-06 1.40e-03 1.22e-04 3.65e-06
CAD 4.08e-03 1.16e-04 2.22e-06 -6.70e-04 1.12e-04 2.81e-06

Table 12. Bank of Canada currency panel, posterior moments of mean
factor loadings. The table shows the posterior mean, posterior standard
deviation, and the numerical standard error for the mean, for loading on the
first (Λµ,i1) and second (Λµ,i2) mean factors.

E[Λσ,i1|y] σ[Λσ,i1|y] σ̂nse,i1 E[Λσ,i2|y] σ[Λσ,i2|y] σ̂nse,i2

AUD 1.090 0.083 0.0033 0.218 0.070 0.0014
BRL 0.733 0.040 0.0008 -0.217 0.038 0.0007
EUR 0.805 0.053 0.0010 0.714 0.052 0.0012
JPY 0.548 0.039 0.0008 0.362 0.033 0.0006

MXN 0.829 0.049 0.0010 -0.282 0.045 0.0008
NZD 0.476 0.037 0.0007 0.242 0.034 0.0005
SGD 0.598 0.038 0.0008 0.104 0.034 0.0006
CHF 1.107 0.072 0.0016 1.245 0.077 0.0022
GBP 0.687 0.038 0.0008 0.000 0.000 0.0000
CAD 0.569 0.037 0.0007 -0.166 0.032 0.0006

Table 13. Bank of Canada currency panel, posterior moments of variance
factor loadings. The table shows the posterior mean, posterior standard
deviation, and the numerical standard error for the mean, for loading on the
first (Λσ,i1) and second (Λσ,i2) variance factors.

of factors is not Gaussian, the log density does have a Hessian matrix that is block band

diagonal. We update jointly the k’th factor series Fσ,k and the k’th row of Φσ from its

conditional posterior distribution using the HESSIAN method of McCausland (2012). The

HESSIAN method has several advantages. Unlike auxiliary mixture model approaches, the

method is generic, not model specific, and there are no mixture approximations of trans-5

formed distributions. The HESSIAN method approximation is close enough that entire

latent state sequences can be jointly and efficiently sampled together with their associated

parameters.
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E[Bµ,i|y] σ[Bµ,i|y] σ̂nse,µ E[Bσ,i|y] σ[Bσ,i|y] σ̂nse,σ

AUD 4.91e-05 1.45e-04 3.42e-06 -12.13 0.17 0.008
BRL 3.19e-05 1.61e-04 3.24e-06 -10.22 0.06 0.002
EUR -8.76e-06 1.10e-04 2.83e-06 -12.50 0.09 0.003
JPY -1.17e-04 1.11e-04 1.99e-06 -10.55 0.05 0.002

MXN -9.76e-05 1.17e-04 2.29e-06 -11.22 0.09 0.003
NZD 5.07e-05 1.60e-04 3.70e-06 -10.75 0.05 0.002
SGD 8.69e-05 6.38e-05 1.53e-06 -12.37 0.05 0.002
CHF 9.12e-06 1.17e-04 3.14e-06 -12.58 0.12 0.005
GBP 3.78e-05 1.03e-04 2.47e-06 -11.13 0.06 0.002
CAD -3.56e-05 1.08e-04 2.23e-06 -11.10 0.05 0.002

Table 14. Bank of Canada currency panel, posterior moments of mean and
variance constants. The table shows the posterior mean, posterior standard
deviation, and the numerical standard error for the mean constant (Bµ,i1)
and variance constant (Bσ,i1).

E[Φij |y] σ[Φij |y] σ̂nse

Φµ,11 0.004 0.021 0.0003
Φµ,12 -0.056 0.024 0.0004
Φµ,21 -0.029 0.024 0.0004
Φµ,22 0.007 0.025 0.0004
Φσ,11 0.852 0.017 0.0005
Φσ,12 0.143 0.019 0.0004
Φσ,21 0.129 0.019 0.0004
Φσ,22 0.201 0.018 0.0003

Table 15. Bank of Canada currency panel, posterior moments of mean and
variance autoregressive coefficients. The table shows the posterior mean,
posterior standard deviation, and the numerical standard error for the mean
factor autoregressive coefficients (Φµ,kl) and variance factor autoregressive
coefficients (Φσ,kl).

I have used the “Getting it Right” procedure of Geweke (2004) to demonstrate the con-

ceptual soundness and correct implementation of my posterior simulation methods. I have

applied the methods to a foreign exchange panel of ten currencies and 2503 daily observa-

tions, and a macroeconomic panel of 134 indicators and 670 monthly observations.

Several extensions of the methods described here to more flexible models are possible.5

Many features could be added to the mean factor model to better complement the variance

factor model. We have seen that the Gibbs sampling approach decouples the computational

aspects associated with the mean and variance factor models, so it would be relatively easy

to slot in alternative mean factor models. Promising extensions include factors with time-

varying variance, factors that are higher order vector autoregressions, factor loadings with10
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Figure 11. Bank of Canada currency panel, mean factor 1. Upper panel:
posterior mean of Fµ,t1, against t; Lower panel: posterior standard deviation
of Fµ,t1 and numerical standard error for the posterior mean
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parsimonious structure or hierarchical factors, and factor loadings on lagged factors. It

would also be possible to model mean and variance factors as a joint vector autoregression.

Appendix A. Missing data, factor founders and initial values

A.1. Missing data. In many applications, including the macro panel application described

below, one does not observe all the series in exactly the same periods. Fortunately it is5

straightforward to accommodate unbalanced panels; the yti are conditionally independent

given unknown factors and parameters, and so we can simply delete likelihood factors for

missing data. The sums in (6), (7), (8), (9) should run for all t in which yti is observed.

The sums in (15), (16), (17) should run for all i for which yti is observed in period t.



38 WILLIAM J. MCCAUSLAND

Figure 12. Bank of Canada currency panel, mean factor 2. Upper panel:
posterior mean of Fµ,t2, against t; Lower panel: posterior standard deviation
of Fµ,t2 and numerical standard error for the posterior mean
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A.2. Selection of factor founders. I selected factor founders by trial and error with the

objective that factors would resemble the static factors obtained in a principal components

analysis. I selected the mean factor founders in order; I chose the i’th mean factor founder

by choosing the index k, among the series not already chosen as mean factor founders,

minimizing (
∑Kµ

j=i+1 L
2
kj)/|Lki|15, where L is the static loading matrix obtained in a principal5

components analysis. I selected the two variance factor founders by unsystematic trial and

error.

A.3. Initial values. To avoid slow convergence of the distribution of MCMC draws to the

posterior target distribution, I choose initial values in the following way.
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Figure 13. Bank of Canada currency panel, variance factor 1. Upper panel:
posterior mean of Fσ,t1, against t; Lower panel: posterior standard deviation
of Fσ,t1 and numerical standard error for the posterior mean
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For Bµ, I use Ordinary Least Squares (OLS) to compute each row Bµ,i, i = 1, . . . , N ,

then compute Ỹ , the matrix of OLS residuals, organized as a T ×N matrix:

B>µ,i =

(
T∑
t=1

xtx
>
t

)−1 T∑
t=1

xtyti, Ỹti = yti −Bµ,ixt.

Then I compute the sample variance of each residual series and construct the N×N diagonal

matrix D whose diagonal elements are these sample variances. Thus the N columns of

D−1/2Ỹ each have zero sample mean and unit sample variance.5

For Λµ and Fµ, I first compute the usual “thin” version of the singular value decompo-

sition of D−1/2Ỹ :

D−1/2Ỹ = USV >,
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Figure 14. Bank of Canada currency panel, variance factor 2. Upper panel:
posterior mean of Fσ,t2, against t; Lower panel: posterior standard deviation
of Fσ,t2 and numerical standard error for the posterior mean
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where U is T ×N and has orthogonal columns; S is N ×N and diagonal; and V is N ×N

and orthogonal. The singular values on the diagonal of S are arranged in decreasing order.

Partition

U =
[
U11 U12

]
, S =

S11 S12

S21 S22

 , V =

V11 V12

V21 V22

 ,
where U11 is T ×Kµ, and S11 and V11 are Kµ ×Kµ. Setting U12 = 0, S22 = 0, V12 = 0 and

V22 = 0 gives the approximation5

(18) Ỹ ≈ U12S11

V11

V21

> .
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Next, I compute the QR decomposition of S11[V >11V
>

21 ], which will allow us to rotate

S11[V >11V
>

21 ] so that it becomes right triangular. The decomposition is

S11

V11

V21

> = QR,

where Q is Kµ×Kµ and orthogonal and R is Kµ×N and right triangular. Then write the

approximation in (18) as

Ỹ ≈ U12QR = (T 1/2U12Q) · (T−1/2R).

The initial values of Fµ and Λµ are Fµ = T 1/2 vec((U12Q)>), and Λµ = T−1/2R>.5

I set Φµ to the first order sample autocovariance of the initial value of Fµ:

Φµ =
1

T

T∑
t=2

Fµ,tF
>
µ,t−1.

Since the initial value of F>µ Fµ equals IKµ by construction, the sample autocovariance is

also the sample autocorrelation.

For Bσ, I first compute the T ×N residual matrix E = Ỹ − U12QR. Then I set Bσ,i1 =

ln 1
T

∑T
t=1E

2
ti, i = 1, . . . , N . Note that in the empirical applications of this paper, there is10

only an intercept and Bσ is a column vector.

For Λσ, Fσ, I first compute the smoothed squared residual series σ2
ti defined by the

following GARCH(1,1)—see Bollerslev (1986)—smoothing of squared residuals E2
ti:

σ1i = exp(Bi1), σti = ω + αE2
ti + βσt−1,i,

with α = 0.2, β = 0.6, ω = exp(Bi1)(1 − α − β). Then I construct the T × N matrix

[lnσ2
ti − ln exp(Bi1)] and compute the initial factor matrix Fσ and initial factor loading15

matrix Λσ using the same procedure used to compute initial values of Fµ and Λµ above:

[lnσ2
ti − ln exp(Bi1)], Kσ, Fσ and Λσ replace Ỹ , Kµ, Fµ and Λµ.

I set Φσ to the first order sample autocorrelation of the initial value of Fσ:

Φσ =
1

T

T∑
t=2

Fσ,tF
>
σ,t−1.
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Appendix B. Details on drawing Φµ and Fµ

Define the stacked mean factor vector Fµ = (F>µ,1, . . . , F
>
µ,T )> and the stacked measure-

ment equation shocks ε = (ε>1 , . . . , ε
>
T )>.

Since the variance of Fµt is I and the variance of the mean factor innovation ut is I−ΦµΦ>µ ,

I can write ΦFµ ∼ N(0,Ω), where5

Φ ≡



I

−Φµ I

−Φµ
. . .

. . . I

−Φµ I


and Ω ≡


I

I − ΦµΦ>µ
. . .

I − ΦµΦ>µ

 .

Therefore Fµ|Φ ∼ N(0,Φ−1ΩΦ−>).

Now define ỹt ≡ yt − Bxt = ΛµFt + εt and let ỹ = (ỹ>1 , . . . , ỹ
>
T ). The variance of ỹ is

diag(σ>1 , . . . , σ
>
T )>, which I denote D.

Since Fµ and ỹ are jointly Gaussian, and sinceFµ
ỹ

 =

 I 0

Λ I

Fµ
ε

 ,
where Λ = IT ⊗ Λµ, I can write the variance of the joint Gaussian distribution as10

Var

Fµ
ỹ

∣∣∣∣∣∣Λµ,Φµ

 =

 I 0

Λ I

Φ−1ΩΦ−> 0

0 D

I Λ>

0 I

 .
WJM: next equation for my benefit, hide from paper

Var

Fµ
ỹ

∣∣∣∣∣∣Λµ,Φµ

 =

 Φ−1ΩΦ−> Φ−1ΩΦ−>Λ>

ΛΦ−1ΩΦ−> ΛΦ−1ΩΦ−>Λ> +D


The precision matrix for the same distribution is the block band matrix

H ≡ Var

Fµ
ỹ

∣∣∣∣∣∣Λµ,Φµ

−1

=

I −Λ>

0 I

Φ>Ω−1Φ 0

0 D−1

 I 0

−Λ I

(19)

=

Φ>Ω−1Φ + Λ>D−1Λ −Λ>D−1

−D−1Λ D−1

 ≡
HFF HFy

HyF Hyy

 ,
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where the last equation defines the partition blocks HFF , HFy, HyF and Hyy.

Then the conditional mean and variance of ỹ given Λµ and Φµ are, respectively, zero and

(Hyy −HyFH−1
FFHFy)

−1. We can write

f(ỹ|Λµ,Φµ) =
1

(2π)NT/2
|H|1/2

|HFF |1/2
exp

[
−1

2
ỹ>(Hyy −HyFH−1

FFHFy)ỹ

]
,

where I use the result |Hyy − HyFH−1
FFHFy| = |H|/|HFF |, which follows directly from

Proposition 2.30 of in Dhrymes (2000).5

We can also use standard formulas for conditional Gaussian distributions to derive the

conditional distribution of Fµ given Φ:

Fµ|ỹ,Λµ,Φµ ∼ N(−H−1
FFHFyỹ,H

−1
FF ).

In the rest of this appendix, I discuss some implementation details that make computations

particularly efficient.

B.1. Computing log f(ỹ|Λµ,Φµ). For our purposes—evaluating the Hastings ratio, equa-10

tion (10)—we only need to evaluate log f(ỹ|Λµ,Φµ) up to an additive term not depending

on Φµ. We can write

log f(ỹ|Λµ,Φµ) = k +
1

2

[
log |H| − log |HFF | − ||L−1

FFHFyỹ||2
]
,

where k does not depend on Φµ, and LFF is the lower Cholesky factor of HFF . Appendix

D describes how to compute LFF efficiently. The quantities −Λ>D−1 and Λ>D−1Λ are

products of block band matrices and can be computed and stored efficiently using well15

known block band matrix operations and representations. See for example, Golub and Van

Loan (1996), Sections 1.3, 4.3, 4.5. Furthermore, they do not depend on Φµ, so they can be

precomputed and used for multiple evaluations of log f(ỹ|Λµ,Φµ) at different values of Φµ.

The determinants are easily and cheaply computed. From the representation of H in (19)

as a product of three matrices, it is easy to see that20

|H| = |Ω|−1|D|−1 = |I − ΦµΦ>µ |−(T−1)
T∏
t=1

N∏
i=1

σ−2
ti .

Now |HFF |1/2 = |LFF | and since LFF is lower triangular, its determinant is simply the

product of its diagonal elements.
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Using the precomputed HFyỹ, the vector L−1
FF [HFyỹ] is efficiently computed using block

band forward substitution, as described in Appendix D.

B.2. Drawing Fµ|Λµ,Φµ, ỹ. To draw Fµ|Λµ,Φµ, ỹ, draw a KµT × 1 vector u ∼ N(0, I)

and compute Fµ = −L−>FF (L−1
FFHFyỹ + u). The mean of the result is −H−>FFHFyỹ and the

variance is L−>FFL−1
FF = H−1

FF , as required. Note that the vector L−1
FFHFyỹ is also part of5

the computation of log f(ỹ|Φ), and so its value will be available whenever we need to draw

Fµ. Premultiplication by L−>FF is efficiently performed by block band backward substitution,

also described in Appendix D.

Appendix C. Details on drawing Φ

This appendix gives details on how I draw Φµ and Φσ from their conditional posterior10

distributions. The description below applies equally well for (Φ, F ) = (Φµ, Fµ) and (Φ, F ) =

(Φσ, Fσ), and so I omit the subscript.

We can write the conditional density of F given Φ as

f(F |Φ) =
|I − ΦΦ>|−(T−1)/2

(2π)T/2
exp

{
−1

2

[
F>1 F1 +

T∑
t=2

(Ft − ΦFt−1)>(I − ΦΦ>)−1(Ft − ΦFt−1)

]}
.

Then the log conditional posterior density of Φ can be expressed as

ln f(Φ|F ) = k + ln f(Φ)− T − 1

2
ln |I − ΦΦ>| − 1

2
tr

[
(I − ΦΦ>)−1

T∑
t=2

FtF
>
t

]

+ tr

[
(I − ΦΦ>)−1Φ

T−1∑
t=2

Ft−1F
>
t

]
− 1

2
tr

[
Φ>(I − ΦΦ>)−1Φ

T−1∑
t=1

FtF
>
t

]
,(20)

where k does not depend on Φ. The sufficient statistics
∑T

t=2 FtF
>
t ,
∑T−1

t=2 Ft−1F
>
t and∑T−1

t=1 FtF
>
t are computed once. Each new proposal of Φ requires evaluating the log density15

in (20) at that value, a computation that does not depend on N or T .

As I do when I update Φ with F integrated out, I use a sequence of random walk

Metropolis steps. I update each column Φk multiple times, using a proposal Φ∗k ∼ N(Φk,Ωk).

Here, the proposal Φ∗ is accepted with probability

min

[
f(Φ∗|F )

f(Φ|F )

]
.
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Let Φk be the k’th column of Φ and Φ−k ≡ Φ−Φk. Thus Φ−k is Φ with its k’th column

set to zero. Let Σ−k = I − Φ−kΦ
>
−k and note that Σ ≡ (I − ΦΦ>) = Σ−k − ΦkΦ

>
k . Now

write the period t innovation to the factor as

Ft − ΦFt−1 = Ft − Φ−kFt−1 − ΦkFt−1,k = vt − Ft−1,kΦk,

where vt ≡ Ft − Φ−kFt−1. By the matrix determinant lemma,

|Σ| = |Σ−k − ΦkΦ
>
k | = (1− Φ>k Σ−1

−kΦk)|Σ−k|.

This allows us to write the determinant term of (20) as5

−T − 1

2
ln |Σ| = −T − 1

2
[ln(1− Φ>k Σ−1

−kΦk) + ln |Σ−k|]

The gradient and Hessian of this term are

∂

∂Φ>k

[
−T − 1

2
ln |Σ|

]
= (T − 1)

Σ−1
−kΦk

1− Φ>k Σ−1
−kΦk

,

∂2

∂Φk∂Φ>k

[
−T − 1

2
ln |Σ|

]
= (T − 1)

[
Σ−1
−k

1− Φ>k Σ−1
−kΦk

+
2Σ−1
−kΦkΦ

>
k Σ−1
−k

(1− Φ>k Σ−1
−kΦk)2

]
.

Now I compute the gradient and Hessian of the sum-of-squares term. By the Woodbury

matrix identity,

(Σ−k − ΦkΦ
>
k )−1 = Σ−1

−k + Σ−1
−kΦk(1− Φ>k Σ−1

−kΦk)
−1Φ>k Σ−1

−k
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Then each quadratic term can be written

(Ft − ΦFt−1)>Σ−1(Ft − ΦFt−1)

= (vt − Ft−1,kΦk)
>(Σ−k − ΦkΦ

>
k )−1(vt − Ft−1,kΦk)

= v>t Σ−1
−kvt +

v>t Σ−1
−kΦkΦ

>
k Σ−1
−kvt

1− Φ>k Σ−1
−kΦk

+ F 2
t−1,k

[
Φ>k Σ−1

−kΦk +
(Φ>k Σ−1

−kΦk)
2

1− Φ>k Σ−1
−kΦk

]

− 2Ft−1,k

[
Φ>k Σ−1

−kvt +
Φ>k Σ−1

−kΦkΦ
>
k Σ−1
−kvt

1− Φ>k Σ−1
−kΦk

]

= v>t Σ−1
−kvt +

(v>t Σ−1
−kΦk)

2

1− Φ>k Σ−1
−kΦk

+ F 2
t−1,k

Φ>k Σ−1
−kΦk

1− Φ>k Σ−1
−kΦk

− 2Ft−1,k

Φ>k Σ−1
−kvt

1− Φ>k Σ−1
−kΦk

= v>t Σ−1
−kvt +

(v>t Σ−1
−kΦk)

2

1− Φ>k Σ−1
−kΦk

+ F 2
t−1,k

(
1

1− Φ>k Σ−1
−kΦk

− 1

)
− 2Ft−1,k

Φ>k Σ−1
−kvt

1− Φ>k Σ−1
−kΦk

=
(v>t Σ−1

−kΦk − Ft−1,k)
2

1− Φ>k Σ−1
−kΦk

+ terms not depending on Φk.

Now write the full sum-of-squares term as

−1

2

T∑
t=2

(v>t Σ−1
−kΦk − Ft−1,k)

2

1− Φ>k Σ−1
−kΦk

= −1

2

Φ>k AΦk − 2b>Φk + c

1− Φ>k Σ−1
−kΦk

,

where A ≡ Σ−1
−k
∑T

t=2 vtv
>
t Σ−1
−k, b

> ≡
∑T

t=2 Ft−1,kv
>
t Σ−1
−k, and c ≡

∑T
t=2 F

2
t−1,k.

T∑
t=2

vtv
>
t =

T∑
t=2

FtF
>
t −Φ−k

T∑
t=2

Ft−1F
>
t −

(
T∑
t=2

Ft−1F
>
t

)>
Φ>−k + Φ−k

(
T∑
t=2

Ft−1F
>
t−1

)
Φ>−k.

T∑
t=2

Ft−1,kv
>
t =

T∑
t=2

Ft−1,kF
>
t −

(
T∑
t=2

Ft−1,kF
>
t−1

)
Φ>−k

T∑
t=2

F 2
t−1,k =

(
T∑
t=2

Ft−1F
>
t−1

)
kk

.

Its gradient and Hessian are5

∂

∂Φ>k

[
−1

2

T∑
t=2

(v>t Σ−1
−kΦk − Ft−1,k)

2

1− Φ>k Σ−1
−kΦk

]
= − AΦk − b

1− Φ>k Σ−1
−kΦk

−
(Φ>k AΦk − 2b>Φk + c)Σ−1

−kΦk

(1− Φ>k Σ−1
−kΦk)2

.
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∂2

∂Φk∂Φ>k

[
−1

2

T∑
t=2

(v>t Σ−1
−kΦk − Ft−1,k)

2

1− Φ>k Σ−1
−kΦk

]
=− A

1− Φ>k Σ−1
−kΦk

−
(Φ>k AΦk − 2b>Φk + c)Σ−1

−k
(1− Φ>k Σ−1

−kΦk)2

− 2
(AΦk − b)Φ>k Σ−1

−k + Σ−1
−kΦk(AΦk − b)>

(1− Φ>k Σ−1
−kΦk)2

− 4
(Φ>k AΦk − 2b>Φk + c)Σ−1

−kΦkΦ
>
k Σ−1
−k

(1− Φ>k Σ−1
−kΦk)3

.

Appendix D. Cholesky decomposition, forward and backward substitution

for block tridiagonal systems

Let H be a symmetric positive definite tridiagonal block band matrix with T ×T blocks,

each block of dimension K×K. Denote by Hst the K×K block at position s, t. Tridiagonal

refers to the block structure here; it means that Hst = 0 for |t− s| < 1.5

Because of the tridiagonal block band structure of H, its lower Cholesky factor L is a

lower triangular block band matrix, with lower block bandwidth equal to one. Thus, Lst = 0

except for s = t and s = t− 1.

We can compute L using L11 = chol(H11) and for t = 2, . . . , T ,

Lt,t−1 = Ht,t−1L
−>
t−1,t−1, Ltt = chol(Htt − Lt,t−1L

>
t,t−1),

where chol(A) refers to the lower Cholesky factor of any positive definite matrix A.10

We can use forward substitution to compute x = L−1y, for any KT × 1 vectors x and y.

Denoting by xt the t’th K × 1 subvector of x and similarly for y,

x1 = L−1
11 y1, xt = L−1

tt (yt − Lt,t−1xt−1).

Likewise, we can use backward substitution to compute z = L−>x, for any KT × 1 vectors

x and z:

zT = L−>TT xT zt = L−>tt (xt − L>t+1,tzt+1).

References15

Aguilar, O., and West, M. (2000). ‘Bayesian dynamic factor models and variance matrix discounting for

portfolio allocation’, Journal of Business and Economic Statistics, 18: 338–357.



48 WILLIAM J. MCCAUSLAND

Bai, J., and Ng, S. (2008). ‘Large Dimensional Factor Analysis’, Foundations and Trends in Econometrics,

3: 89–163.

Bollerslev, T. (1986). ‘Generalized Autoregressive Conditonal Heteroskedasticity’, Journal of Econometrics,

31(3): 307–327.

Carter, C. K., and Kohn, R. (1994). ‘On Gibbs Sampling for State Space Models’, Biometrika, 81(3):5

541–553.

Carvalho, C. M., Chang, J., Lucas, J. E., Wang, Q., and West, M. (2008). ‘High-Dimensional Sparse Factor

Modeling: Applications in Gene Expression Genomics’, Journal of the American Statistical Association,

103(484): 1438–1456.

Chan, J. C. C., and Jeliazkov, I. (2009). ‘Efficient Simulation and Integrated Likelihood Estimation in State10

Space Models’, Working paper.

Chib, S., Omori, Y., and Asai, M. (2009). ‘Multivariate Stochastic Volatility’, in T. G. Anderson (ed.),

Handbook of Financial Time Series. Springer–Verlag.

de Jong, P., and Shephard, N. (1995). ‘The Simulation Smoother for Time Series Models’, Biometrika, 82(1):

339–350.15

Del Negro, M., and Otrok, C. (2008). ‘Dynamic factor models with time-varying parameters: measuring

changes in international business cycles’, Discussion Paper Staff Reports 326, Federal Reserve Bank of New

York.

Dhrymes, P. J. (2000). Mathematics for Econometrics, Third Edition. Springer–Verlag, New York.

Durbin, J., and Koopman, S. J. (2002). ‘A Simple and Efficient Simulation Smoother for State Space Time20

Series Analysis’, Biometrika, 89(3): 603–615.
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