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a b s t r a c t

Simulation smoothing involves drawing state variables (or innovations) in discrete time
state–spacemodels from their conditional distribution given parameters and observations.
Gaussian simulation smoothing is of particular interest, not only for the direct analysis
of Gaussian linear models, but also for the indirect analysis of more general models.
Several methods for Gaussian simulation smoothing exist, most of which are based on
the Kalman filter. Since states in Gaussian linear state–space models are Gaussian Markov
random fields, it is also possible to apply the Cholesky Factor Algorithm (CFA) to draw
states. This algorithm takes advantage of the band diagonal structure of the Hessian
matrix of the log density to make efficient draws. We show how to exploit the special
structure of state–spacemodels to draw latent states evenmore efficiently.We analyse the
computational efficiency of Kalman-filter-based methods, the CFA, and our new method
using counts of operations and computational experiments. We show that for many
important cases, our method is most efficient. Gains are particularly large for cases where
the dimension of observed variables is large or where one makes repeated draws of states
for the same parameter values. We apply our method to amultivariate Poissonmodel with
time-varying intensities, which we use to analyse financial market transaction count data.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

State–space models are time series models featuring both latent and observed variables. The latent variables have
different interpretations according to the application. They may be the unobserved states of a system in biology, economics
or engineering. They may be time-varying parameters of a model. They may be factors in dynamic factor models, capturing
covariances among a large set of observed variables in a parsimonious way.
Gaussian linear state–space models are interesting in their own right, but they are also useful devices for the analysis

of more general state–space models. In some cases, the model becomes a Gaussian linear state–space model, or a close
approximation, once we condition on certain variables. These variables may be a natural part of the model, as in Carter and
Kohn (1996), or they may be convenient but artificial devices, as in Kim et al. (1998), Stroud et al. (2003) and Frühwirth-
Schnatter and Wagner (2006).
In other cases, one can approximate the conditional distribution of states in a non-Gaussian or non-linear model by its

counterpart in a Gaussian linearmodel. If the approximation is close enough, one can use the latter for importance sampling,
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as Durbin and Koopman (1997) do to compute likelihood functions, or as a proposal distribution in a Metropolis–Hastings
update, as Shephard and Pitt (1997) do for posterior Markov chain Monte Carlo simulation.
To fix notation, consider the following Gaussian linear state–space model, expressed using notation from de Jong and

Shephard (1995):

yt = Xtβ + Ztαt + Gtut , t = 1, . . . , n, (1)
αt+1 = Wtβ + Ttαt + Htut , t = 1, . . . , n− 1, (2)

α1 ∼ N(a1, P1), ut ∼ i.i.d. N(0, Iq), (3)

where yt is a p×1 vector of dependent variables, αt is am×1 vector of state variables, and β is a k×1 vector of coefficients.
The matrices Xt , Zt , Gt , Wt , Tt and Ht are known. Eq. (1) is the measurement equation and Eq. (2) is the state equation. Let
y ≡ (y>1 , . . . , y

>
n )
> and α ≡ (α>1 , . . . , α

>
n )
>.

We will consider the familiar and important question of simulation smoothing, which is drawing α as a block from
its conditional distribution given y. This is an important component of various sampling methods for learning about the
posterior distribution of states, parameters and other functions of interest.
Several authors have proposed ways of drawing states in Gaussian linear state–space models using the Kalman filter,

including Carter and Kohn (1994), Frühwirth-Schnatter (1994), de Jong and Shephard (1995), and Durbin and Koopman
(2002).
Rue (2001) introduces the Cholesky Factor Algorithm (CFA), an efficient way to draw Gaussian Markov Random Fields

(GMRFs) based on the Cholesky decomposition of the precision (inverse of variance) of the random field. He also recognizes
that the conditional distribution of α given y in Gaussian linear state–space models is a special case of a GMRF. Knorr-Held
and Rue (2002) comment on the relationship between the CFA and methods based on the Kalman filter.
Chan and Jeliazkov (2009) describe two empirical applications of the CFA algorithm for Bayesian inference in state–space

macroeconomic models. One is a time-varying parameter vector autoregression model for output growth, unemployment,
income and inflation. The other is a dynamic factor model for US post-war macroeconomic data.
The Kalman filter is used not only for simulation smoothing, but also to evaluate the likelihood function for Gaussian

linear state–space models. We can do the same using the CFA and our method. Both give evaluations of f (α|y) for arbitrary
α with little additional computation. We can then evaluate the likelihood as

f (y) =
f (α)f (y|α)
f (α|y)

for any value of α. A convenient choice is the conditional mean of α given y, since it is easy to obtain and simplifies the
computation of f (α|y).
The Kalman filter also delivers intermediate quantities that are useful for computing filtering distributions, the

conditional distributions of α1, . . . , αt given y1, . . . , yt , for various values of t . While it is difficult to use the CFA algorithm
to compute these distributions efficiently, it is fairly straightforward to do so using our method.
We make four main contributions in this paper. The first is a new method, outlined in Section 2, for drawing states in

state–space models. Like the CFA, it uses the precision and co-vector (precision times mean) of the conditional distribution
of α given y and does not use the Kalman filter. Unlike the CFA, it generates the conditional means E[αt |αt+1, . . . , αn, y]
and conditional variances Var[αt |αt+1, . . . , αn, y] as a byproduct. These conditional moments turn out to be useful in
an extension of the method, described in McCausland (2008), to non-Gaussian and non-linear state–space models with
univariate states. This is because it facilitates Gaussian and other approximations to the conditional distribution of αt given
αt+1 and y. With little additional computation, one can also compute the conditional means E[αt |y1, . . . , yt ] and variances
Var[αt |y1, . . . , yt ], which together specify the filtering distributions, useful for sequential learning.
The second main contribution, described in Section 3, is a careful analysis of the computational efficiency of various

methods for drawing states, showing that the CFA and our new method are much more computationally efficient than
methods based on the Kalman filter when p is large or when repeated draws of α are required. For the important special case
of state–space models, our new method is up to twice as fast as the CFA for largem. We find examples of applications with
large p in recentwork inmacroeconomics and forecasting using ‘‘data-rich’’ environments,where a large number of observed
time series is linked to a much smaller number of latent factors. See, for example, Boivin and Giannoni (2006), which
estimates Dynamic Stochastic General Equilibrium (DSGE)models, or Stock andWatson (1999, 2002) and Forni et al. (2000),
which shows that factor models with large numbers of variables give better forecasts than small-scale vector autoregressive
(VAR) models do. Examples with large numbers of repeated draws of α include the evaluation of the likelihood function in
non-linear or non-Gaussian state–space models using importance sampling, as in Durbin and Koopman (1997).
Our third contribution is to illustrate these simulation smoothingmethods using an empirical application. In Section 4,we

use them to approximate the likelihood function for a multivariate Poisson state–space model, using importance sampling.
Latent states govern time-varying intensities. Observed data are transaction counts in financial markets.
The final contribution is the explicit derivation, in Appendix A, of the precision and co-vector of the conditional

distribution of α given y in Gaussian linear state–space models. These two objects are the inputs to the CFA and our new
method.
We conclude in Section 5.
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2. Precision-based methods for simulation smoothing

In this section we discuss two methods for state smoothing using the precision Ω and co-vector c of the conditional
distribution ofα given y. The firstmethod is due to Rue (2001),who considers themore general problemof drawingGaussian
Markov random fields. The second method, introduced here, offers new insights and more efficient draws for the special
case of Gaussian linear state–space models. Both methods involve pre-computation, which one performs once for a given
Ω and c , and computation that is repeated for each draw.
We will takeΩ and c as given here. In Appendix A, we show how to computeΩ and c in terms of Xt , Zt , Gt ,Wt , Tt ,Ht , a1

and P1, assuming that the stacked innovation vt ≡ ((Gtut)>, (Htut)>)> has full rank.
The full rank condition is frequently, but not always, satisfied and we note that de Jong and Shephard (1995) and Durbin

and Koopman (2002) do not require this assumption. The full rank condition is not as restrictive as it may appear, however,
for two reasons pointed out by Rue (2001).
First, we can draw α conditional on the linear equality restriction Aα + b by drawing α̃ unconditionally and then

‘‘conditioning by Kriging’’ to obtain α. This gives α = α̃−Ω−1A>(AΩ−1A>)−1(Aα̃+ b). One can pre-compute the columns
ofΩ−1A> in the sameway aswe computeµ = Ω−1c in Appendix B, then pre-compute AΩ−1A> and−Ω−1A>(AΩ−1A>)−1.
Second, state–space models where the innovation has less than full rank are often more naturally expressed in another

form, one that allows application of the CFA method. Take, for example, a model where a univariate latent variable αt
is an autoregressive process of order p and the measurement equation is given by (1). Such a model can be coerced
into state–space form, with a p-dimensional state vector and an innovation variance of less than full rank. However, the
conditional distribution of α given y is a GMRF and one can apply the CFA method directly.
Having repeated these points, we acknowledge that the full rank condition is still quite restrictive. Conditioning by

Kriging is costly when A has O(n) rows, and it seems to us that simulation smoothing in autoregressive moving average
(ARMA) models is impractical using precision-based methods.
Rue (2001) introduces a simple procedure for drawing Gaussian random fields.We suppose thatα ismultivariate normal,

with a band diagonal precision matrix Ω and co-vector c. We let N be the length of α and b be the number of non-zero
subdiagonals inΩ .Ω is symmetric, so its bandwidth is 2b+ 1.
Pre-computation consists of computing the Cholesky decompositionΩ = LL> using an algorithm that exploits the band

diagonal structure of Ω and then computing L−1c using band back-substitution. To draw α ∼ N(Ω−1c,Ω−1), one draws
ε ∼ N(0, IN) and then computes α = (L>)−1([L−1c] + ε) using band back-substitution. Here and elsewhere, we use square
brackets to denote previously computed quantities. The decomposition and back-substitution operations are standard in
commonly used numerical computation libraries: the LAPACK routine DPBTRF computes the Cholesky decomposition of
band diagonal matrices, and the BLAS routine DTBSV solves banded triangular systems of equations using band back-
substitution.
Rue (2001) recognizes that the vector of states α in Gaussian linear state–space models is an example of a Gaussian

Markov random field. In Appendix A, we explicitly derive Ω and c. We note that for the state–space model defined in the
introduction, N = nm and b = 2m− 1.
We now introduce another method (MMP method hereafter) for drawing α based on the precisionΩ and co-vector c of

its conditional distribution given y. It is based on the following result, proved in Appendix B.

Result 2.1. If α|y ∼ N(Ω−1c,Ω−1), whereΩ has the block band structure of (13), then

αt |αt+1, . . . , αn, y ∼ N(mt −ΣtΩt,t+1αt+1,Σt) and E[α|y] = (µ>1 , . . . , µ
>

n )
>,

where

Σ1 = (Ω11)
−1, m1 = Σ1c1,

Σt = (Ωtt −Ω
>

t−1,tΣt−1Ωt−1,t)
−1, mt = Σt(ct −Ω>t−1,tmt−1),

µn = mn, µt = mt −ΣtΩt,t+1µt+1.

The result is related to a Levinson-like algorithm introducedbyVandebril et al. (2007). Their algorithmsolves the equation
Bx = y, where B is an n×n symmetric band diagonalmatrix and y is an n×1 vector. Result 2.1 extends the results in Vandebril
et al. (2007) in two ways. First, we modify the algorithm to work with m× m submatrices of a block band diagonal matrix
rather than individual elements of a band diagonal matrix. Second, we use intermediate quantities computed while solving
the equationΩµ = c for µ = E[α|y] in order to compute E[αt |αt+1, . . . , αn, y] and Var[αt |αt+1, . . . , αn, y].
Pre-computation involves iterating the following computations for t = 1, . . . , n:

1. Compute the Cholesky decompositionΣ−1t = ΛtΛ>t , whereΣ
−1
1 = Ω11 andΣ

−1
t = Ωtt−[Ω

>

t−1,tΣt−1Ωt−1,t ] for t > 1.
2. ComputeΛ−1t Ωt,t+1 using triangular back-substitution.
3. Compute the symmetric matrixΩ>t,t+1ΣtΩt,t+1 = [Λ

−1
t Ωt,t+1]

>
[Λ−1t Ωt,t+1].
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4. Compute mt using triangular back-substitution twice, where m1 = (Λ>1 )
−1(Λ−11 c1) and mt = (Λ>t )

−1(Λ−1t (ct −
Ω>t−1,tmt−1)) for t > 1.

To draw α ∼ N(Ω−1c,Ω−1), we proceed backwards. For t = n, . . . , 1:

1. Draw εt ∼ N(0, Im).
2. Compute αt using matrix–vector multiplication and back-substitution, where αn = mn + (Λ>n )

−1εn and αt = mt +
(Λ>t )

−1(εt − [Λ
−1
t Ωt,t+1]αt+1) for t < n.

We consider now the problem of computing the filtering distribution at time t , the conditional distribution of αt given
y1, . . . , yt . Since α and y are jointly multivariate Gaussian, this distribution is also Gaussian and it is enough to compute
the mean E[αt |y1, . . . , yt ] and variance Var[αt |y1, . . . , yt ]. It turns out that we can do this with very little additional
computation.
Fix t and consider the two cases n = t and n > t . It is easy to see (in Appendix A) that for τ = 1, . . . , t − 1, the values

of cτ ,Ωττ andΩτ ,τ+1 do not differ between cases. Therefore the values of mτ and Στ do not vary from case to case either.
We can use Eq. (14) (forΩnn, taking n = t) to compute

Ω̃tt ≡ Z>t (GtG
>

t )
−1Zt + A22,t−1,

and Eq. (15) (for cn, taking n = t) to compute

c̃t ≡ Z>t (GtG
>

t )
−1(yt − Xtβ)− A21,t−1(yt−1 − Xt−1β)+ A22,t−1(Wt−1β).

Then

Var[αt |y1, . . . , yt ] = Σ̃t ≡ (Ω̃tt −Ω>t−1,tΣt−1Ωt−1,t)
−1

and

E[αt |y1, . . . , yt ] = m̃t ≡ Σ̃t(c̃t −Ω>t−1,tmt−1).

3. Efficiency analysis

We compare the computational efficiency of variousmethods for drawing α|y. We do this using counts of operations and
computational experiments with artificial data.

3.1. Counts of operations

We consider separately the fixed computational cost of pre-computation, which is incurred only once, no matter how
many draws are needed, and themarginal computational cost required for an additional draw.We do this because there are
some applications, such as Bayesian analysis of state–space models using Gibbs sampling, in which only one draw is needed
and other applications, such as importance sampling in non-Gaussian models, where many draws are needed.
We compute the cost of various matrix operations in terms of the number of floating point multiplications required per

observation. All the methods listed in the introduction have fixed costs that are third order polynomials in p and m. The
methods of Rue (2001), Durbin and Koopman (2002) and the present paper all have marginal costs that are second order
polynomials in p andm. We will ignore fixed cost terms of order less than three and marginal cost terms of order less than
two. The marginal costs are important only when multiple draws are required.
We take the computational cost of multiplying an N1 × N2 matrix by an N2 × N3 matrix as N1N2N3 scalar floating point

multiplications. If the result is symmetric or if one of the matrices is triangular, we divide by two. It is possible to multiply
matrices more efficiently, but the dimensions required before realizing savings are higher than those usually encountered
in state–spacemodels. We take the cost of the Cholesky decomposition of a full N×N matrix as N3/6 scalar multiplications,
which is the cost using the algorithm in Press et al. (1992, p. 97). When the matrix has bandwidth 2b+ 1, the cost is Nb2/2.
Solving a triangular systemofN equations using back-substitution requiresN2/2 scalarmultiplications.When the triangular
system has bandwidth b+ 1, only Nbmultiplications are required.

3.1.1. Fixed costs
We first consider the cost of computing the precisionΩ and co-vector c , which is required for themethods of Rue (2001)

and the current paper.
The cost depends on how we specify the variance of vt , the stacked innovation. The matrices Gt and Ht are more

convenient for methods using the Kalman filter, while the precision At is most useful for the precision-based methods.
We recognize that it is often easier to specify the innovation distribution in terms of Gt and Ht rather than At . In most cases,
however, the matrices At are diagonal, constant, or take on one of a small number of values, and so the additional time
required to compute them is negligible.
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Table 1
Scalar multiplications needed for pre-computation.

Method Operation Scalar multiplications

Kalman PtZ>t m2p
Zt [PtZ>t ] mp2/2
Tt [PtZ>t ] m2p
Dt = ΥtΥ >t (Cholesky) p3/6
[TtPtZ>t + HtG

>
t ](Υ

>
t )
−1Υ −1t mp2

KtZt m2p
TtPt m3

[TtPt ]L>t m3

[HtG>t ]Kt m2p

CFA Ω = LL> 2m3

MMP (Ωtt −Ω
>

t−1,tΣt−1Ωt−1,t ) = ΛtΛ
>
t (Cholesky) m3/6

Λ−1t Ωt,t+1 m3/2
Ω>t,t+1ΣtΩt,t+1 = [Λ

−1
t Ωt,t+1]

>
[Λ−1t Ωt,t+1] m3/2

There is an important case where it is in fact more natural to provide the matrices At . When linear Gaussian state–space
models are used as approximations of non-linear or non-Gaussian state–space models, the At are typically based on the
Hessian matrix of the log observation density of the latter. See Durbin and Koopman (1997) and Section 4 of the present
paper for examples.
In general, calculation of the Ωtt and Ωt,t+1 is computationally demanding. However, in many cases of interest, At , Zt

and Tt are constant, or take on one of a small number of values. In these cases, the computational burden is a constant,
not depending on n. We do need to compute each ct , but provided that the matrix expressions in parentheses in the
equations following (13) can be pre-computed, this involves matrix–vector multiplications, whose costs are only second
order polynomials in p andm.
We now consider the cost of the Kalman filter, which is used in most methods for simulation smoothing. The

computations are as follows:

et = yt − [Xtβ] − Ztat , Dt = ZtPtZ>t + [GtG
>

t ],

Kt = (TtPtZ>t + [HtG
>

t ])D
−1
t , Lt = Tt − KtZt ,

at+1 = [Wtβ] + Ttat + Ktet , Pt+1 = [TtPt ]L>t + [HtH
>

t ] + [HtG
>

t ]Kt .

As before, we use square brackets for quantities, such as [TtPt ] above, that are computed in previous steps. Here and
elsewhere, we also use them for quantities such as [HtH>t ] that usually are constant or take values in a small pre-computable
set.
Table 1 lists the matrix–matrix multiplications, Cholesky decompositions, and solutions of triangular systems required

for three high level operations: an iteration of the Kalman filter, the computation of Ω = LL> using standard methods for
band diagonal Ω , and the computation of the Σt and mt of Result 2.1. All simulation smoothing methods we are aware of
use one of these high level operations. We represent the solution of triangular systems using notation for the inverse of a
triangular matrix, but no actual matrix inversions are performed, as this is inefficient and less numerically reliable. Table 1
also gives the number of scalar multiplications for each operation as a function of p and m. Terms of less than third order
are omitted, as we ignore matrix–vector multiplications, whose costs are mere second order monomials inm and p.
There are special cases where the Kalman filter computations are less costly. In some of these, the elements of Tt and Zt

are zero or one, and certain matrix multiplications do not require any scalar multiplications. In others, certain matrices are
diagonal, reducing the number of multiplications by an order.
The relative efficiency of precision-based methods compared with Kalman-filter-based methods depends on various

features of the application. We see that the precision-based methods have no third order monomials involving p. For the
MMPmethod, the coefficient of them3 term is 7/6, comparedwith 2 for the CFA and 2 for the Kalman filter if TtPt is a general
matrix multiplication. If Tt is diagonal or composed of zeros and ones, the coefficient ofm3 drops to 1 for the Kalman filter.

3.1.2. Marginal costs
Compared with the fixed cost of pre-processing, the marginal computational cost of an additional draw from α|y is

negligible for all four methods we consider. In particular, no matrix–matrix multiplications, matrix inversions, or Cholesky
decompositions are required. However, when large numbers of these additional draws are required, this marginal cost
becomes important. It is here that the precision-based methods are clearly more efficient than those based on the Kalman
filter. We use the methods of Durbin and Koopman (2002) and de Jong and Shephard (1995) as benchmarks.
Using the modified simulation smoothing algorithm in Section 2.3 of Durbin and Koopman (2002) (DK hereafter), an

additional draw from α|y requires the following computations. We define εt ≡ Gtut and ηt ≡ Htut , and assume that
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G>t Ht = 0 and Xtβ = 0, recognizing that these assumptions can be easily relaxed. The first step is forward simulation using
Eqs. (6) and (7) in that article.

x1 ∼ N(0, P1), v+t = Ztxt + ε
+

t xt+1 = Ttxt − Ktv+t + η
+

t ,

where ε+t ∼ N(0,Ξt) and η
+

t ∼ N(0,Qt). The next step is the backwards recursion of Eq. (5):

rn = 0, rt−1 = [ZtD−1t ]v
+

t + L
>

t rt ,

and the computation of residuals in Eq. (4):

η̂+t = Qt rt .

A draw η̃ from the conditional distribution of η given y is given by

η̃ = η̂ − η̂+ + η+,

where η̂ is a pre-computed vector. To construct a draw α̃ from the conditional distribution of α given y, we use

α̃1 = α̂1 − P1r0 + x1, α̃t+1 = Tt α̃t + η̃t ,

where α̂1 is pre-computed.
de Jong and Shephard (1995) (DeJS hereafter) draw α|y using the following steps, given in Eq. (4) of their paper. First εt is

drawn from N(0, σ 2Ct), where the Cholesky factor of σ 2Ct can be pre-computed. Then rt is computed using the backwards
recursion

rt−1 = [Z>t D
−1
t et ] + L

>

t rt − [V
>

t C
−1
t ]εt .

Next, αt+1 is computed as

αt+1 = [Wtβ] + Ttαt +Ωt rt + εt .

In the MMP approach, we draw, for each observation, a vector εt ∼ N(0, Im) and compute

αt = mt + (Λ>t )
−1(εt − [Λ

−1
t Ωt,t+1]αt+1).

The matrix–vector multiplication requires m2 multiplications and the triangular back-substitution requires m(m − 1)/2
multiplications and m floating point divisions. We can convert the divisions into less costly multiplications if we store the
reciprocals of the diagonal elements ofΛt , obtained during the pre-computation ofΛ−1t Ωt,t+1.
The band back-substitution used by Rue (2001) is quite similar to this. However, it is a little less efficient if one is using

standard band back-substitution algorithms. These do not take advantage of the special structure of state–space models, for
whichΩ has elements equal to zero in its first 2m− 1 subdiagonals.

3.2. Computational experiments

The performance of a simulation smoothing method does not only depend on the number of floating point
multiplications. In this section, we perform computational experiments with artificial data to illustrate some of the other
issues involved. The experiments reveal that these other issues are important.
One issue is whether the method is coded in a high level interpreted language such as Matlab or a lower level

programming language such as C. Depending on the dimension of the problem, the number and depth of loops, and
the availability and efficiency of relevant functions in the interpreted language, the cost of interpreting commands may
dominate or be dominated by the cost of executing commands for numerical analysis.
Processing resources are also important, particularly the availability of multiple processor cores and an optimized math

library that exploits them.
We use two different state–space models and generate two different artificial data sets for each one. The first model is a

regression model with time-varying regression parameters. The measurement equation is

yt = xtβt + εt , εt ∼ i.i.d.N(0, σ 2ε ),

where yt is a univariate observed dependent variable, xt is an observed m-vector of explanatory variables, and βt is an
unobserved time-varyingm-vector of regression coefficients. The dynamics of βt are given by the state equation

β1 ∼ N(a,Q1) (βt+1 − βt) ∼ i.i.d. N(0,Q ),

and the εt and βt are mutually independent. We generate two artificial data sets from the model, one with m = 4 and the
other with m = 8. In both cases, n = 1000, a = 0m, Q1 = Im, Q = (0.001)2( 12 Im +

1
2 ιmι

>
m), and σ

2
ε = 0.05. Im is the

m-dimensional identity matrix and ιm is them-vector with unit elements. We generate the vector of explanatory variables
according to xt1 = 1 and xti ∼ N(0, 1) for i = 2, . . . ,m.
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Table 2
Costs in ms, time-varying parameter model.

Algorithm Pre-computation,m = 4 Draw,m = 4 Pre-computation,m = 8 Draw,m = 8

MMP-M 126.0 28.2 132.7 29.7
MMP-C 1.178 0.812 5.21 1.74
CFA-M 66.6 0.853 87.7 1.65
CFA-C 2.08 0.737 8.36 1.64
DeJS-M 277.6 64.7 299.1 66.6

Table 3
Costs in ms, dynamic factor model.

Algorithm m = 4, p = 10 m = 10, p = 100

MMP-M 123.3 140.5
MMP-C 1.95 11.07
CFA-M 39.6 79.9
CFA-C 2.81 16.4
DeJS-M 416 1165

The second state–space model is a dynamic factor model of the kind used in ‘‘data-rich’’ environments. The observation
and state equations are

yt = Zαt + ut , ut ∼ N(0,D),
α1 = a+ v1, v1 ∼ N(0,Q1),
αt+1 = Tαt + vt , vt ∼ N(0,Q ),

where yt is a p-vector of observable dependent variables,αt is am-vector of latent factors, a is a fixed vector, Z and T are fixed
coefficientmatrices andD,Q1 andQ are fixed covariancematrices,D being diagonal. The ut and vt aremutually independent.
For the simulations, we set the following parameter values. We draw the elements of the factor loading matrix Z

independently, with Zij ∼ N(0, (0.001)2) for i = 1, . . . ,m and j = 1, . . . , p. We set T = 0.9Im. We assign the following
values to the covariance matrices: D = Ip, a = 0m, Q1 = Im, Q = (0.2)2( 12 Im +

1
2 ιmι

>
m).

We generate two artificial data sets from the dynamic factor model. For the first, we use m = 4 and p = 10, which are
relatively small. For the second, we use m = 10 and p = 100, more typical of data-rich environments. For each artificial
data set we perform simulation smoothing for the following methods:

DeJS-M Method of de Jong and Shephard (1995), implemented in Matlab.
CFA-M Cholesky Factor Algorithm of Rue (2001), implemented in Matlab. The matrix Ω is stored as a sparse matrix and

the Cholesky decomposition exploits the sparse structure.
MMP-M Method introduced in Section 2, implemented in Matlab.
CFA-C Cholesky Factor Algorithm, implemented in C. The matrix Ω is stored as a band triangular matrix according to

the convention of LAPACK. We use the LAPACK routine DPBTRF to compute the Cholesky decomposition of band
diagonal matrices, and the BLAS routine DTBSV for band back-substitution.

MMP-C Method introduced in Section 2, implemented in C.

We use Matlab R2009a running on a MacBook Pro with a 2.2 GHz Intel Core Duo processor running OS X 10.6.1. We
measure running times for Matlab code using the Matlab profiler, and those for C code using the XCode profiler. Results
for the time-varying parameter model are shown in Table 2. For each method, we measure the time required for pre-
computation and the time required for each draw. Table 3 shows results for the dynamic factor model. Here costs are the
total cost of pre-computation and a single draw. We do not report the marginal cost of a draw since importance sampling is
impractical for higher-dimensional models.
Although we report results only for n = 1000, experiments not reported here suggest that timing is very close to linear

in the number of observations n. This is hardly surprising, given that the numbers of operations required for interpretation
and numerical computation both grow linearly in n.
We see clearly that the cost of interpretation dominates the cost of numerical computation for low-dimensional

problems. This gives a clear advantage to the CFA method, as it does not require loops over t except for the construction of
theΩtt andΩt,t+1 and then the sparse matrixΩ .
WhenMMP and CFA are coded in C, there is no longer an interpretation cost. Here, we see that the MMPmethod is faster

than the CFA.
Even for compiled code, we see that the relative costs of CFA andMMP do not exactly correspond to the relative numbers

of floating point operations. Experiments not reported here suggest that this is because it is easier to exploit multiple cores
for operations on larger matrices and vectors.
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4. An empirical application to count models

Durbin andKoopman (1997) showhowto compute an arbitrarily accurate evaluation of the likelihood function for a semi-
Gaussian state–space model in which the state evolves according to Eq. (2), but the conditional distribution of observations
given states is given by a general distribution with density (or mass) function p(y|α). To simplify, we suppress the notation
for dependence on θ , the vector of parameters.
The approach is as follows. The likelihood function L(θ)we wish to evaluate is

L(θ) = p(y) =
∫
p(y, α)dα =

∫
p(y|α)p(α)dα. (4)

Durbin and Koopman (1997) employ importance sampling to approximate this integral. The approximating Gaussianmodel
has the same state density p(α), a Gaussian measurement density g(y|α) and likelihood

Lg(θ) = g(y) =
g(y|α)p(α)
g(α|y)

. (5)

Substituting p(α) from (5) into (4) gives

L(θ) = Lg(θ)
∫
p(y|α)
g(y|α)

g(α|y)dα = Lg(θ)Eg [w(α)], (6)

where

w(α) ≡
p(y|α)
g(y|α)

.

One can generate a random sample α(1), . . . , α(Ns) from the density g(α|y) using any of the methods for drawing states in
fully Gaussian models, then compute a Monte Carlo approximation of L(θ).
The approximating state–space model has the form

yt = µt + Zαt + εt , (7)

where the εt are independent N(0,Ξt) and independent of the state equation innovations. The Gaussian measurement
density g(y|α) is chosen such that the Hessian (with respect to α) of log g(y|α)matches the Hessian of log p(y|α) at α̂, the
conditional mode of α given y. Durbin and Koopman (1997) use routine Kalman filtering and smoothing to find α̂.

4.1. Modifications to the algorithm for approximating L(θ)

We propose here three modifications of the Durbin and Koopman (1997) method for approximating L(θ). The modified
method does not involve Kalman filtering.
First, we use the MMP algorithm to draw α from its conditional distribution given y.
Second, we compute Lg(θ) as the extreme right hand side of Eq. (5). The equation holds for any value of α; convenient

choices which simplify computations include the prior mean and the posterior mean. We use the prior mean.
Finally, we calculate α̂ using Result 2.1, as described in the rest of this section. As in Durbin and Koopman (1997), the

method is essentially the Newton method. The difference lies in the implementation.
We iterate the following steps until convergence.

1. Using the current value of α̂, find the precision ¯̄H and co-vector ¯̄c of a Gaussian approximation to p(α|y) based on a second
order Taylor expansion of log p(α)+ log p(y|α) around the point α̂.

2. Using the current values of ¯̄H and ¯̄c , compute α̂ = ¯̄H
−1
¯̄c, the mean of the Gaussian approximation, using Result 2.1.

We compute the precision ¯̄H as H̄ + H̃ , and the co-vector ¯̄c as c̄ + c̃ , where H̄ and c̄ are the precision and co-vector of
the marginal distribution of α (detailed formulations are provided for our example in the next section), and H̃ and c̃ are the
precision and co-vector of the Gaussian density with mean α̂ and variance equal to the negative inverse of the Hessian of
log p(y|α) at α̂. Since H̃ is block diagonal and H̄ is block band diagonal, ¯̄H is also block band diagonal.
We compute H̃ and c̃ as follows. Let a(αt) ≡ −2 log[p(yt |αt)]. We approximate a(αt) by ã(αt), consisting of the first

three terms of the Taylor expansion of a(αt) around α̂t :

a(αt) ≈ ã(αt) = a(α̂t)+
∂a(α̂t)
∂αt

(αt − α̂t)+
1
2
(αt − α̂t)

>
∂2a(α̂t)
∂αt∂α

>
t
(αt − α̂t).

If we complete the square, we obtain

ã(αt) = (αt − h−1t ct)
>ht(αt − h−1t ct)+ k,
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where

ht =
1
2
∂2a(α̂t)
∂αt∂α

>
t
, ct = ht α̂t −

1
2
∂a(α̂t)
∂αt

,

and k does not depend on αt . Note that ht and ct are the precision and co-vector of a multivariate normal distribution with
density proportional to exp[− 12 ã(αt)].
Since log p(y|α) is additively separable in the elements ofα, itmeans that it is reasonablywell approximated, as a function

of α, by
∏n
t=1 exp[−

1
2 ã(αt)], which is proportional to a multivariate normal distribution with precision H̃ and co-vector c̃ ,

given by

H̃ ≡


h1 0 · · · 0
0 h2 · · · 0
...

...
. . .

...
0 0 · · · hn

 and c̃ ≡

c1...
cn

 .

4.2. A multivariate Poisson model with time-varying intensities

As an example of a semi-Gaussian state–space model, let us consider a case where yt ≡ (yt1, . . . , ytp) is a vector of
observed counts. We assume that the yti are conditionally independent Poisson with intensities λti, so that the conditional
density of yt given λt1, . . . , λtp is

p(yt1, . . . , ytp|λt1, . . . , λtp) =
p∏
i=1

exp(−λti)λ
yti
ti

yti!
. (8)

The latent count intensities λt1, . . . , λtp are assumed to follow a factor model:

λti = exp

(
m∑
j=1

zijαtj

)
, i = 1, . . . , n, (9)

αt+1,j = (1− φj)ᾱj + φjαtj + ηtj, j = 1, . . . ,m, (10)

where the ηtj are independent N(0,Qj) and the distribution of α1 is the stationary distribution, so that the α1,j are
independent N(ᾱj,Qj/(1− φ2j )).
Denote byQ the diagonalmatrix diag(Q1, . . . ,Qm). The vector ofmodel parameters is θ ≡ (ᾱj, φj,Qj, zij)i∈{1,...,p}, j∈{1,...,m}.

To ensure identification,1 we impose zii = 1 and zij = 0 for j > i.
We now turn to the problem of estimating the likelihood L(θ) of this particular semi-Gaussianmodel using the approach

of Durbin and Koopman (1997). For this example, the precision H̄ and co-vector c̄ , are given by

H̄ =



H̄11 H̄12 0 · · · 0 0
H̄21 H̄22 H̄23 · · · 0 0
0 H̄32 H̄33 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · H̄n−1,n−1 H̄n−1,n
0 0 0 · · · H̄n,n−1 H̄nn

 , c̄ =


c̄1
c̄2
...
c̄n−1
c̄n

 ,

where

H̄11 = H̄nn = Q−1,

H̄tt =

(1+ φ
2
1)/Q1 · · · 0
...

. . .
...

0 · · · (1+ φ2m)/Qm

 , t = 2, . . . , n− 1,

H̄t,t+1 = H̄t+1,t =

−φ1/Q1 · · · 0
...

. . .
...

0 · · · −φm/Qm

 , t = 1, . . . , n− 1,

1 See for example Heaton and Solo (2004).
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Table 4
Computational costs per observation per additional draw of αt .

Algorithm × N0,1

DeJS (3p2 + p)/2+ 2mp+m2 p
DK (5p2 + p)/2+ 4mp+ 2m+m2 p+m
CFA 2m2 + pm m
MMP (3m2 +m)/2+ pm m

Table 5
Time cost of drawing α(i) as a function of the number of draws Ns . The values are in 100ths of seconds.

Method Ns = 1 Ns = 10 Ns = 50 Ns = 150 Ns = 250

DeJS 8.14 8.43 8.89 10.61 11.78
DK 5.56 6.25 7.32 11.01 13.49
MMP-M 5.88 6.12 6.28 6.88 7.47
CFA-M 1.88 1.98 2.16 2.65 3.10
MMP-C 1.11 1.18 1.34 1.90 2.30
CFA-C 1.13 1.21 1.44 2.19 2.73

c̄1 = c̄n =

 ᾱ1(1− φ1)/Q1...
ᾱm(1− φm)/Qm

 ,

c̄t =

 ᾱ1(1− φ1)
2/Q1

...

ᾱm(1− φm)2/Qm

 , t = 2, . . . , n− 1.

We compare the computational efficiency of all the three methods for estimating the likelihood for this semi-Gaussian
state–space model. We do so by counting operations and profiling code. Since a large number of draws from g(α|y) is
required for a good approximation of L(θ), we focus on themarginal computational cost of an additional draw, the overhead
associated with the first draw being small. For all the four methods, we compute α̂ using the fast method presented in
Section 4.1.
We have already seen how to make an incremental draw using the various methods. For both MMP and CFA, we add

p × mmultiplications for each of the Zαt , which are required to evaluate p(y|α). The computational costs per observation
for an additional draw of αt are summarized in Table 4.
We profile code for all the four methods to see how they perform in practice. We use data from the New York Stock

Exchange Trade and Quote database on the stocks of four gold mining companies: Agnico-Eagle Mines Limited, Barrick Gold
Corporation, Gold Fields Limited and Goldcorp Inc. For each stock, we observe transaction counts for 195 consecutive two
minute intervals covering trading hours on November 6, 2003. The data are plotted in Fig. 1.
For the case where the number of factors is equal to the number of series, that ism = p = 4, and for various values of Ns,

Table 5 gives the time cost in 100ths of seconds of generatingNs draws of α. All times are averaged over 10,000 replications.2
We report results for two implementations of theMMP and CFA algorithms, oneMatlab only (MMP-M, CFA-M) and a second
where pre-computation (Cholesky decomposition ofΩ for CFA, steps 1 and 2 ofMMP) and draws (band back-substitution for
CFA, steps 3 and 4 of MMP) are coded in C (MMP-C, CFA-C). The implementation of MMP in C gives a better comparison with
the Matlab implementation of CFA that is able to use specialized libraries to compute the banded Cholesky decomposition
and perform the band back-substitution.3
First, we see that for a single draw, DK is slightly faster than DeJS and MMP (Matlab). For larger numbers of draws, MMP

is fastest. Second, these first three methods are dominated for every value of Ns by the CFA-M algorithm. This is the result
of requiring less operations (compared to DeJS and DK) and being very efficiently implemented in Matlab. There are no
loops over t , which reduces interpretation costs. Third, implementing CFA in C so that it uses LAPACK and BLAS routines for
banded triangular matrices and systems is computationally more efficient than Matlab’s built-in functions. Fourth, we see
that MMP-C is faster than CFA-C. As a point of reference, Durbin and Koopman (1997) consider Ns = 200 (combined with
antithetic and control variables) as an acceptable value in an empirical example they consider.
We next discuss the results of the estimation of this multivariate count data model. The estimates, standard errors4

and log-likelihood values are presented in Table 6 for different values of m, the number of latent factors. These results are
obtained with Ns = 500 and antithetic variables. To select a value formwe cannot use a test statistic such as the likelihood

2 The simulations were performed on a MacBook Pro 2.4 GHz with Matlab R2008b.
3 By declaringΩ to be a sparse matrix, Matlab can use cholmod, a sparse Cholesky factorization package.
4 See Durbin and Koopman (2001, Chapter 12).
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Fig. 1. Transaction data.

Table 6
Estimation results for the model for different values ofm. The standard errors are in parentheses.

m = 1 m = 2 m = 3 m = 4

ᾱ1 2.0569 (0.0101) 2.0207 (0.0050) 1.9999 (0.0140) 2.0013 (0.0049)
ᾱ2 0.4022 (0.0718) 0.7311 (0.2105) 0.7004 (0.0821)
ᾱ3 0.5360 (0.0218) 0.2939 (0.0184)
ᾱ4 0.3858 (0.0489)
φ1 0.7873 (0.0007) 0.7402 (0.0255) 0.7595 (0.0079) 0.7710 (0.0059)
φ2 0.1780 (0.0549) 0.1233 (0.0353) 0.2829 (0.0144)
φ3 0.0886 (0.0162) 0.0412 (0.0020)
φ4 0.1182 (0.0025)
Q1 0.1582 (0.0019) 0.2225 (0.0207) 0.2250 (0.0041) 0.2142 (0.0077)
Q2 0.0321 (0.0030) 0.1316 (0.0628) 0.1378 (0.0133)
Q3 0.1451 (0.0262) 0.1678 (0.0074)
Q4 0.1405 (0.0120)
z21 0.9928 (0.0064) 0.8170 (0.0358) 0.6626 (0.1000) 0.6714 (0.0388)
z31 0.9965 (0.0065) 0.5830 (0.1243) 0.6449 (0.0380) 0.6738 (0.0242)
z41 0.9882 (0.0065) 0.6073 (0.1192) 0.5785 (0.0148) 0.6098 (0.0359)
z32 2.2228 (0.2558) 0.3012 (0.0665) 0.5203 (0.0078)
z42 2.0586 (0.2555) 0.6674 (0.4069) 0.4394 (0.0247)
z43 0.7747 (0.3121) 0.3856 (0.0105)

log L(θ̂) −2432.71 −2378.44 −2350.67 −2324.22

ratio test with the usual χ2 limit distribution. For example, a likelihood ratio test for m = 1 versus m = 2 where we test
z32 = z42 = 0 leaves the parameters ᾱ2, φ2 and Q2 unidentified under the null. An alternative is to use an information
criterion such as AIC = −2 log L(θ) + 2 dim(θ) and SIC = −2 log L(θ) + log(pn) dim(θ). See Song and Belin (2008) for an
example. These two criteria both suggest thatm should equal four. For themodel withm = 4, we can see that the first factor
is the most persistent with φ̂1 = 0.7710. It is also the factor with the highest innovation variance and the highest factor
loadings, the three largest z’s being z21, z31 and z41.

5. Conclusions

In this paper we introduce a new method for drawing state variables in Gaussian state–space models from their
conditional distribution given parameters and observations. The method is quite different from standard methods, such
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as those of de Jong and Shephard (1995) and Durbin and Koopman (2002), that use Kalman filtering. It is much more in the
spirit of Rue (2001), who describes an efficient method for drawing Gaussian random vectors with band diagonal precision
matrices. As Rue (2001) recognizes, the distribution α|y in linear Gaussian state–space models is an example.
Our first contribution is computingΩ and c for a widely used and fairly flexible state–space model. These are required

inputs for both the CFA of Rue (2001) and the method we described here.
Our second contribution is a new precision-based state smoothing algorithm. It is more computationally efficient for

the special case of state–space models, and delivers the conditional means E[αt |αt+1, . . . , αn, y] and conditional variances
Var[αt |αt+1, . . . , αn, y] as a byproduct. These conditional moments turn out to be very useful in an extension of themethod,
described in McCausland (2008), to non-linear and non-Gaussian state–space models with univariate states.
The algorithm is an extension of a Levinson-like algorithm introduced by Vandebril et al. (2007), for solving the equation

Bx = y, where B is an n × n symmetric band diagonal matrix and y is a n × 1 vector. The algorithm extends theirs in two
ways. First, wemodify the algorithm toworkwithm×m submatrices of a block band diagonal matrix rather than individual
elements of a band diagonal matrix. Second, we use intermediate quantities computed while solving the equationΩµ = c
for the mean µ given the precisionΩ and co-vector c in order to compute the conditional means E[αt |αt+1, . . . , αn, y] and
conditional variances Var[αt |αt+1, . . . , αn, y].
Our third contribution is a computational analysis of several state smoothing methods. One can often pre-compute the

Ωtt and Ωt,t+1, in which case the precision-based methods are more efficient than those based on the Kalman filter. The
advantage is particularly strong when p is large or when several draws of α are required for each value of the parameters.
Kalman filtering, which involves solving systems of p equations in p unknowns, requires O(p3) scalar multiplications. If the
At can be pre-computed, or take on only a constant number of values, the precision-basedmethods require no operations of
order higher than p2, in p. If the Zt and Tt can also be pre-computed, or take on only a constant number of values, the order
drops to p. For largem, our method involves half as many scalar multiplications as CFA.
Illustrations with artificial data reveal that performance does not depend only on the number of floating point

multiplications. Whether numerical computations are implemented in high level interpreted code or low level compiled
code is important whenm and p are small and, consequently, the relative burden of interpreting code in loops is high. Even
when computations are performed in compiled code, operations on higher dimension vectors andmatricesmay be relatively
more efficient if they can exploit multiple cores.
We consider an application of our methods to the evaluation of the log-likelihood function for a multivariate Poisson

model with latent count intensities.
We have learned several things relevant to the choice of a simulation smoothing method for a given state–space model.

It is clear that no method dominates the others in all cases, and that much depends on the details of the state–space model,
its dimensions, whether the user is using a high level language such as Matlab or a low level language such as C, the number
of draws required for each value of the parameters, and whether or not sequential learning is important.
The two precision-based methods are naturally suited for models with large values of p, such as those used in data-rich

environments, or when one needs large numbers of repeated draws, as when one applies importance sampling for non-
linear or non-Gaussian models. On the other hand, they are not well suited for state–space models such as ARMA models
that cannot be expressed in a form where the variance of the stacked innovation term has full rank. They may also be less
efficient thanmethods of de Jong and Shephard (1995) or Durbin and Koopman (2002), based on Kalman filtering, when the
computation of theΩtt orΩt,t+1 requires a number of operations that is third order inm and p. This is the case when Zt or
Tt or the innovation precision At are full matrices taking on different values at every value of t .
Of the two precision-based methods, the CFA method is best suited for low-dimensional models implemented in

interpreted languages such as Matlab, provided that the language has routines for efficient Cholesky decomposition and
back-substitution, either for sparsematrices or for bandedmatrices. TheMMPmethod is better suited for larger dimensional
models. It is for these models that the benefits of coding in a compiled language are greatest. Once the decision to use a
compiled language is made, the MMP method offers further computational efficiency by avoiding multiplications by zero.
The MMP method is also valuable when sequential learning is required.
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Appendix A. Derivation ofΩ and c

Here we derive expressions for the precision Ω and co-vector c of the conditional distribution of α given y, for the
Gaussian linear state–space model described in Eqs. (1)–(3). The matrix Ω and vector c are required inputs for the CFA
method and our new method.
Let vt be the stacked period-t innovation:

vt =

[
Gtut
Htut

]
.

We will assume that the variance of vt has full rank.
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We define the matrix At as the precision of vt and then partition it as:

At ≡

[
GtG>t GtH>t
HtG>t HtH>t

]−1
=

[
A11,t A12,t
A21,t A22,t

]
,

where A11,t is the leading p× p submatrix.
Clearly α and y are jointly Gaussian and therefore the conditional distribution of α given y is also Gaussian. We can write

the log conditional density of α given y as

log f (α|y) = −
1
2

[
α>Ωα − 2c>α

]
+ k, (11)

where k does not depend on α. Using the definition of the model in Eqs. (1)–(3) we can also write

log f (α|y) = log f (α, y)− log f (y) = −
1
2
g(α, y)+ k′, (12)

where

g(α, y) = (α1 − a1)>P−11 (α1 − a1)+
n−1∑
t=1

[
yt − Xtβ − Ztαt
αt+1 −Wtβ − Ttαt

]>
At

[
yt − Xtβ − Ztαt
αt+1 −Wtβ − Ttαt

]
+ (yn − Xnβ − Znαn)>(GnG>n )

−1(yn − Xnβ − Znαn),

and k′ is a term not depending on α.
Matching linear and quadratic terms in the αt between Eqs. (11) and (12), we obtain

Ω ≡



Ω11 Ω12 0 · · · 0

Ω>12 Ω22 Ω23
. . .

...

0 Ω>23
. . .

. . . 0
...

. . .
. . . Ωn−1,n−1 Ωn−1,n

0 · · · 0 Ω>n−1,n Ωnn


c ≡


c1
c2
...
cn

 , (13)

where

Ω11 ≡ Z>1 A11,1Z1 + Z
>

1 A12,1T1 + T
>

1 A21,1Z1 + T
>

1 A22,1T1 + P
−1
1 ,

Ωtt ≡ Z>t A11,tZt + Z
>

t A12,tTt + T
>

t A21,tZt + T
>

t A22,tTt + A22,t−1, t = 2, . . . , n− 1,

Ωnn ≡ Z>n (GnG
>

n )
−1Zn + A22,n−1, (14)

Ωt,t+1 ≡ −Z>t A12,t − T
>

t A22,t , t = 1, . . . , n− 1,

c1 ≡ (Z>1 A11,1 + T
>

1 A21,1)(y1 − X1β)− (Z
>

1 A12,1 + T
>

1 A22,1)(W1β)+ P
−1
1 a1,

ct ≡ (Z>t A11,t + T
>

t A21,t)(yt − Xtβ)− (Z
>

t A12,t + T
>

t A22,t)(Wtβ)
− A21,t−1(yt−1 − Xt−1β)+ A22,t−1(Wt−1β), t = 2, . . . , n− 1,

cn ≡ Z>n (GnG
>

n )
−1(yn − Xnβ)− A21,n−1(yn−1 − Xn−1β)+ A22,n−1(Wn−1β). (15)

Appendix B. Proof of Result 2.1

Suppose α|y ∼ N(Ω−1c,Ω−1) and define

Σ1 = Ω
−1
11 , m1 = Σ1c1,

Σt = (Ωtt −Ω
>

t−1,tΣt−1Ωt−1,t)
−1, mt = Σt(ct −Ω>t−1,tmt−1).

Now let µn ≡ mn and for t = n− 1, . . . , 1, let µt = mt −ΣtΩt,t+1µt+1. Let µ = (µ>1 , . . . , µ
>
n )
>.

We first show thatΩµ = c , which means that µ = E[α|y]:

Ω11µ1 +Ω12µ2 = Ω11(m1 −Σ1Ω12µ2)+Ω12µ2
= Ω11(Ω

−1
11 c1 −Ω

−1
11 Ω12µ2)+Ω12µ2 = c1.
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For t = 2, . . . , n− 1,
Ω>t−1,tµt−1 +Ωttµt +Ωt,t+1µt+1 = Ω>t−1,t(mt−1 −Σt−1Ωt−1,tµt)+Ωttµt +Ωt,t+1µt+1

= Ω>t−1,tmt−1 + (Ωtt −Ω
>

t−1,tΣt−1Ωt−1,t)µt +Ωt,t+1µt+1

= Ω>t−1,tmt−1 +Σ
−1
t µt +Ωt,t+1µt+1

= Ω>t−1,tmt−1 +Σ
−1
t (mt −ΣtΩt,t+1µt+1)+Ωt,t+1µt+1

= Ω>t−1,tmt−1 + (ct −Ω
>

t−1,tmt−1) = ct .

Ωn,n−1µn−1 +Ωnnµn = Ωn,n−1(mn−1 −Σn−1Ωn−1,nµn)+Ωnnµn
= Ωn,n−1mn−1 +Σ−1n µn

= Ωn,n−1mn−1 +Σ−1n mn
= Ωn,n−1mn−1 + (cn −Ωn,n−1)mn−1 = cn.

We will now prove that E[αt |αt+1, . . . , αn, y] = mt − ΣtΩt,t+1αt+1 and that Var[αt |αt+1, . . . , αn, y] = Σt .We begin
with the standard result

α1:t |αt+1:n, y ∼ N
(
µ1:t −Ω

−1
1:t,1:tΩ1:t,t+1:n(αt+1:n − µt+1:n),Ω

−1
1:t,1:t

)
,

where µ, α andΩ are partitioned as

µ =

[
µ1:t
µt+1:n

]
, α =

[
α1:t
αt+1:n

]
, Ω =

[
Ω1:t,1:t Ω1:t,t+1:n
Ωt+1:n,1:t Ωt+1:n,t+1:n

]
,

withµ1:t , α1:t andΩ1:t,1:t having dimensions tm×1, tm×1, and tm× tm, respectively. Note that the only non-zero elements
ofΩ1:t,t+1:n come fromΩt,t+1. We can therefore write the univariate conditional distribution αt |αt+1:n as

αt |αt+1:n ∼ N(µt − (Ω−11:t,1:t)ttΩt,t+1(αt+1 − µt+1), (Ω
−1
1:t,1:t)tt).

The following inductive proof establishes the result Var[αt |αt+1, . . . , αn, y] = Σt :
(Ω11)

−1
= Σ1

(Ω−11:t,1:t)tt = (Ωtt −Ωt,1:t−1Ω
−1
1:t−1,1:t−1Ω1:t−1,t)

−1

= (Ωtt −Ω
>

t−1,tΣt−1Ωt−1,t)
−1
= Σt .

As for the conditional mean,

E[αt |αt+1, . . . , αn, y] =
{
µt −ΣtΩt,t+1(αt+1 − µt+1) t = 1, . . . , n− 1
µn t = n.

By the definition of µt ,mt = µt +ΣtΩt,t+1µt+1, so we obtain

E[αt |αt+1, . . . , αn, y] =
{
mt −ΣtΩt,t+1αt+1 t = 1, . . . , n− 1
mn t = n.
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