
MULTIVARIATE STOCHASTIC VOLATILITY USING THE HESSIAN
METHOD

Abstract. We propose a new method for the analysis of multivariate stochastic volatility
models, based on efficient draws of volatility from its conditional posterior distribution. It
applies to models with several kinds of cross-sectional dependence. Full VAR autoregression
and covariance matrices give cross-sectional volatility dependence. Mean factor structure
allows conditional correlations, given states, to vary in time and covary with conditional
variances; factors are Student’s t with factor-specific degrees of freedom. Given factors,
returns have heterogeneous Student’s t marginals and a copula completes their joint distri-
bution. We draw each volatility series as a block, one series at a time, using the HESSIAN
method of McCausland (2012). Using daily returns data for ten currencies, we show that
all features of the model are important.
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1. Introduction

Multivariate volatility models are powerful tools. Different kinds of static and dynamic
cross-sectional dependence among asset returns capture different stylized facts.

1.1. Stylized facts and their significance. Asset return volatility varies over time, in
response to news and revised expectations of future value. It tends to cluster, so that
large price changes tend to be followed by other large changes. There is cross-sectional
conditional dependence of volatility across markets and assets, and this dependence is time-
varying. Cross-sectional correlations increase in periods of high market volatility, especially
in bear markets. The distribution of returns has heavier tails than the normal distribution;
this remains true however much one tries to condition on current information. There is an
asymmetric relation between price and volatility changes known as the “leverage effect”,
according to which increases in volatility are associated more with large decreases in price
than with large increases. These stylized facts are documented in Cont (2001), for the
univariate case, and in Christodoulakis (2007) for the multivariate.

Multivariate volatility models that can capture these empirical regularities have many im-
portant applications, especially in modern portfolio management. Learning about the joint
distribution of asset returns is a key element for the evaluation and construction of portfo-
lios. Accurate estimation of the conditional dependence in a cross section of returns allows
investors to identify opportunities or risks associated with particular portfolios, especially
during periods of market stress. Financial crises usually have a strong impact on correlation:
as the risk of some assets increases, investors wish to sell other risky assets, which leads to
more highly correlated returns. The unfortunate consequence is that diversification is least
effective at reducing risk at the very times when that risk is highest.

1.2. Multivariate volatility models. Two difficulties arise when we extend volatility mod-
els to the multivariate case. First, the conditional variance of returns given states must be
positive definite at every point in time. Second, there is a severe trade-off between parsimony
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and flexibility, as the number of parameters can increase quickly in the number of assets.
Restraining the number of parameters or using informative priors can mitigate the danger of
overfitting. Much of the difference between multivariate models reflects a choice about how
to do this. This has implications on which stylized facts can be captured by the model.

As with univariate volatility models, there are two main types of multivariate volatility
models: observation-driven and parameter-driven. In observation-driven models such as
GARCH, volatility is a deterministic function of observed variables, which allows straight-
forward evaluation of the likelihood function. This advantage has made the GARCH model
and its extensions popular for univariate and multivariate problems alike.

In parameter-driven volatility models, known as stochastic volatility (SV) models, volatil-
ity is a latent process. These models are more natural discrete time representations of the
continuous time models often used in asset pricing and upon which much of modern finance
theory is based. See Eraker and Wang (2015), for example, on the use of continuous time
models for asset pricing. The recent literature in macroeconomics introducing conditional
heteroscedasticity into Dynamic Stochastic General Equilibrium (DSGE) models—see, for
example, Justiniano (2008) and Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and Yao
(2012)—heavily favours SV models: agents’ behaviour in these models reflects their uncer-
tainty about future volatility, by design. Several papers give empirical evidence in favour
of SV models over observation-driven models: Kim, Shephard, and Chib (1998), Jacquier,
Polson, and Rossi (1994), Geweke (1994), Carnero, Pena, and Ruiz (2004) and Chan and
Grant (2016) in the univariate case and Danielsson (1998) in the multivariate case.

Likelihood evaluation in parameter-driven models, which amounts to high-dimensional
integration over latent states, is difficult. But it is not necessary in most Bayesian approaches.
It suffices to be able to evaluate the joint density of returns, states and parameters, a known
function. Since the introduction of Bayesian Markov chain Monte Carlo (MCMC) methods
by Jacquier, Polson, and Rossi (1994) for univariate SV models, inference for these models
has become much more feasible.

This paper focuses on (parameter-driven) Multivariate SV (MSV) models. For a review
of (observation-driven) multivariate GARCH models, see Bauwens, Laurent, and Rombouts
(2006). We propose new MCMC methods for Bayesian analysis of MSV models, based on
efficient draws of volatility from its conditional posterior distribution.

We model daily returns, but our methods could be extended to models where there is
not only a measurement equation for returns but also for realized measures such as realized
volatilities and realized covariances. Such models combine complementary information: daily
returns, that are less subject to microstructure noise, with realized measures that incorporate
more frequently observed data. Some recent articles of this type following a stochastic
volatility approach are Shirota, Omori, Lopes, and Piao (2015), Venter and de Jongh (2014),
Shirota, Hizu, and Omori (2014) and Koopman and Scharth (2013). See also Jin and Maheu
(2013), following a multivariate GARCH approach; and Liu and Maheu (2015) and Jin and
Maheu (2016), Markov switching approaches.

1.3. Copulas in multivariate volatility models. A copula is a multivariate distribution
with uniform marginals. Sklar (1959) showed that any continuous multivariate distribution
can be expressed, uniquely, in terms of its marginals and a copula. For the purposes of
specification and estimation, one can decouple the marginals from other features of the
joint distribution. Copulas have proven useful for multivariate volatility modelling: all the
research and development that went into, and continues to go into univariate volatility models
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can be carried over to the multivariate case by combining existing univariate models, series
by series, using copulas. See Patton (2009) for an overview of the application of copulas in
the modelling of financial time series and Kolev, dos Anjos, and de M. Mendez (2006) for a
survey and contributions to copula theory.

Typically, estimation is performed in two steps: The first step is point estimation of the
parameters of the marginals, series by series, followed by the computation of probability
integral transforms, often by way of standardized residuals. The second step is estimation of
the parameters of the copulas relating, at each time period, residuals over the cross-section;
the copula may or may not be time-varying. Examples include Chollete, Heinen, and Valdes-
ogo (2009), Hafner and Manner (2012), Min and Czado (2010) and Oh and Patton (2013).
Two-step estimation is easier than joint estimation, whether one uses some optimization cri-
terion such as maximum likelihood, or Bayesian inference. However, joint estimation shares
information across series; all the available data inform local estimation. From a frequentist
perspective, this translates to greater estimation efficiency. From a Bayesian perspective,
conditioning on more data allows one to learn more about local parameters and latent vari-
ables. And, what is more serious, second step estimation cannot be truly Bayesian, due to the
elimination of uncertainty in the first step. (No analogous problem arises in the frequentist
case if one analyses the sampling variability of the two-step estimator.)

Here, we use Gibbs sampling to simulate the full joint posterior distribution, isolating the
copula parameters in a Gibbs block. In this way, we retain some of the advantages copulas
offer in decoupling marginals from other features of the joint distribution, without giving up
the advantages of joint estimation. However, it does raise some computational difficulties;
we identify these below and show how we overcome them.

1.4. Features of our model and their significance. We propose a factor model for p
observed return series, with q factor series. For each of these m = p + q series, a SV series
describes its conditional variance. Our inferential methods, described below, allow for a
combination of features that is difficult or intractable using other methods. First, factors do
not need to be multivariate Gaussian, nor a mixture of these such as the popular multivariate
Student’s t. The multivariate Student’s t is a scale mixture of Gaussians, with all variates
scaled by the same draw from the mixing distribution. Thus not only are marginals Student’s
t with the same degrees of freedom, variates tend to have extreme values at the same time.
Second, volatility factors can be statistically dependent: the vector of log volatilities is a
first-order Gaussian VAR, with full autoregression and variance matrices. Third, there can
be conditional cross-sectional dependence across returns, given factors, which we model using
copulas. Copulas allow us to represent a multivariate distribution of innovations in a cross-
section in a very flexible way, by decoupling the choice of marginal distributions—which we
allow to be different from each other—from the choice of the dependence structure.

Thus our model accounts for cross-sectional dependence in three ways: (1) cross-sectional
dependence of log volatilities; (2) mean factor structure, allowing conditional correlations
to covary with conditional variances, (3) cross-sectional dependence of returns that remains
after accounting for dependence attributable to the common factors.

We allow heavy-tailed conditional return distributions. In our applications, we use Stu-
dent’s t marginals, but this is not essential, as we don’t rely on data augmentation to obtain
conditional Gaussianity, in contrast to many methods for models with Student’s t distribu-
tions that exploit the fact that they are Gaussian mixtures. In general, we allow the marginal
distribution to vary by asset, which in our application translates to asset-specific degrees of
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freedom parameters. We also depart from the usual assumption of Gaussian factors and
allow Student’s t factors, with factor-specific degrees of freedom.

For our empirical example we made some specific choices: mean factors are Student’s t,
the autoregressive coefficient and innovation variance matrices of the volatility vector have a
parsimonious—but not diagonal—representation, and we use a Gaussian copula to describe
dependence across return innovations. We emphasize, however, that our methods do not
rely on these special features.

1.5. The role of the HESSIAN method in model flexibility. Most methods for Gibbs-
updating the conditional posterior distribution of volatility in SV are based on the method
introduced by Kim, Shephard, and Chib (1998). Take the univariate case first. Typically,
conditioning on parameters and any other latent variables yields an SV model with a mea-
surement equation of the form rt = mt + σte

αt/2εt, εt ∼ N(0, 1), where mt and σt do not
depend on αt and are therefore (conditionally) constant. An example of mt is a jump term.
An example of σt is a mixing variable in a scale mixture model, used to thicken the tail of
the conditional return distribution.

Kim, Shephard, and Chib (1998) developed the standard method for the special case
mt = 0, σt = 1. Taking the logarithm of the square of both sides of the measurement equation
yields an equation linear in αt. The non-Gaussian distribution of log ε2t is approximated by
a finite Gaussian mixture, tabulated in advance. The state space is augmented to include
mixture component indicators; conditioning on these yields a linear Gaussian model. Chib,
Nardari, and Shephard (2002) exploit the fact that the transformation r̃t = (rt−mt)/σt yields
the model r̃t = eαt/2εt, amenable to the method in Kim, Shephard, and Chib (1998). They
describe simulation methods for models with various mt and σt, including the examples
above. Cogley and Sargent (2005) and Primiceri (2005) develop methods for SV models
where rt is multivariate; here, conditioning on all unknown parameters and all latent variables
except volatility yields a model of the form

(1) rt = mt + A−1t Σ
1/2
t εt, Σt = diag(exp(αt)), εt ∼ N(0, I),

where the exponential is taken element-wise, and mt and At do not depend on αt. A similar

transformation yields At(yt − mt) = Σ
1/2
t εt; the right hand side consists of independent

univariate SV models, each amenable to the method of Kim, Shephard, and Chib (1998).
This approach is widely used in multivariate stochastic volatility models, but it requires that
the conditional measurement equation be transformable into the form given in (1). To see

how this is restrictive, note that dependence across elements of A−1t Σ
1/2
t εt is incompatible

with diagonal A−1t ; when A−1t is not diagonal, the amount of variation of conditional (given

At and Σt) kurtosis across elements of A−1t Σ
1/2
t εt is limited, since linear combinations of

independent random variables have tails as fat as their fattest tailed components. Later, we
will see that our empirical exercise gives evidence both for widely varying conditional (given
factors) kurtosis across assets and for conditional correlations across innovations—despite
our selecting a number of factors greater than that suggested by a principal components
analysis.

Our paper adopts an alternative approach, based on the HESSIAN1 method described
in McCausland (2012). This is a procedure to draw all latent states in univariate state

1An acronym for Highly Efficient Simulation Smoothing, In A Nutshell, and based on the Hessian matrix of
the log target distribution.
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space models as a block, preserving their exact conditional posterior distribution. It is fast
and numerically efficient and does not require data augmentation. It is generic, not relying
on any particular features of the distribution of yt. The observed yt can be univariate or
multivariate; if multivariate, there can be cross-sectional dependence and its length need
not be constant: missing or mixed frequency data is easily accommodated. The conditional
distribution of yt can depend on the history y1:t−1, and it can be discrete, continuous, or
mixed, series by series. Implementing it for a new model involves providing code to evaluate
derivatives of the log conditional density log π(yt|αt, y1:t−1) with respect to αt, for fixed y1:t.

While the HESSIAN method is designed for models with univariate states, we can apply
it series by series: the conditional distribution of one state sequence, given the others, pa-
rameters and data, is the conditional posterior distribution of states in a suitably defined
univariate state space model. Very close approximations to these conditional posterior distri-
butions are used as proposal distributions. We can also draw any volatility series, together
with some of its associated parameters, as a single block. Because of strong dependence
between volatilities and these parameters, the result is higher numerical efficiency.

To apply the HESSIAN method in this way, we require only that the multivariate state
sequence be a Gaussian first-order vector autoregressive process and that the conditional
distribution of the observed vector yt, given the state sequence (α1, α2, . . .) and the history
(y1, . . . , yt−1), depends only on αt and (y1, . . . , yt−1). This requirement is satisfied for a wide
variety of state space models, including MSV models, many of which cannot be transformed
to auxiliary mixture models in the way that the models of Cogley and Sargent (2005) and
Primiceri (2005) can.

1.6. Outline. In Section 2, we describe our multivariate stochastic volatility model. In
Section 3, we describe our methods for posterior simulation. In Section 4, we verify the
correctness of our proposed algorithm using a test of program correctness similar to that
proposed by Geweke (2004). In Section 5, we present a daily exchange rate application. In
Section 6, we conclude.

2. The Model

This section describes our model and compares it to some other specifications in the
literature. We also provide prior distributions. Table 1 describes all of the model’s variables.
The notation is similar to that in Chib, Nardari, and Shephard (2006).

There are p observed return series, q factor series and m = p + q latent log volatility
series. The conditional distribution of the latent factor vector ft = (ft1, . . . , ftq) and the
observed return vector rt = (rt1, . . . , rtp) given the contemporaneous state vector αt is given

by rt = Bft + V
1/2
t ε

(1)
t and ft = D

1/2
t ε

(2)
t , or alternatively

(2) yt =

[
rt
ft

]
=

[
V

1/2
t BD

1/2
t

0 D
1/2
t

]
εt,

where B is a p × q factor loading matrix, Vt = diag(exp(αt1), . . . , exp(αtp)) and Dt =

diag(exp(αt,p+1), . . . , exp(αt,p+q)) are volatility matrices and εt = (ε
(1)>
t , ε

(2)>
t )> is an innova-

tion vector. We could have added a constant or lagged returns to the measurement equation,
without causing a problem for the HESSIAN method. Given that we are modelling currency
returns, we chose not to include these features.
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Symbol dimensions description
ᾱ m× 1 mean of state αt
A m×m autocorrelation coefficient matrix for αt
Σ m×m unconditional variance of αt
ν m× 1 vector of degrees of freedom parameters
B p× q factor loading matrix
R m×m Gaussian copula parameter
εt m× 1 period t return/factor innovation
αt m× 1 period t log volatility state
rt p× 1 period t return vector
ft q × 1 period t factor
yt m× 1 (r>t , f

>
t )>

Table 1. Table of symbols

Given parameters ᾱ, A and Σ, the latent log volatility process is a stationary Gaussian
first order vector autoregression, given by (Σ is the unconditional variance)

(3) α1 ∼ N(ᾱ,Σ), αt+1|αt ∼ N((I − A)ᾱ + Aαt,Σ− AΣA>).

We specify the distribution of εt = (εt1, . . . , εtm) by providing marginals and a copula.
For each εti, let Fε(εti|θi) be its cumulative distribution function (cdf) and π(εti|θi) be its
density. We will use Student’s t marginals with asset-specific degrees of freedom, but these
could be replaced by other distributions, with suitable modification of the derivations below.
We choose a Gaussian copula with variance

R =

[
R11 0
0 Iq

]
,

where R11, and thus R, are correlation matrices. Again, one could replace the Gaussian cop-
ula with a non-Gaussian one, with suitable modifications of the derivations below. However,
this would be computationally costly; we benefit from the fact that the derivatives of a log
Gaussian density are non-zero only up to second order. At the same time, the benefits are
not clear: while the Gaussian copula affords little flexibility to capture co-movements in the
tails of the return distributions, we are already allowing for these through fat-tailed factors.

We denote by CR(u1, . . . , um) = ΦR(Φ−1(u1), . . . ,Φ
−1(um)) the Gaussian copula with cor-

relation matrix R. Here, Φ and φ are the cdf and density of the univariate N(0, 1); and ΦR

and φR are the cdf and density of the m-variate N(0, R). Then the density of vector εt is
the product of the Gaussian copula density and the Student-t marginal densities:

(4) πε(εt|θ) = cR(Fε(εt1|θ1), . . . , Fε(εtm|θm))
m∏
i=1

π(εti|θi),

where

cR(u1, . . . , um) =
∂(m)CR(u1, . . . , um)

∂u1 · · · ∂um
=
φR(Φ−1(u1), . . . ,Φ

−1(um))∏m
i=1 φ(Φ−1(ui))

.

Letting xi ≡ Φ−1(ui), i = 1, . . . ,m and x ≡ (x1, . . . , xm), we can write

(5) log cR(u1, . . . , um) = −1

2
(log |R|+ log(2π) + x>(R−1 − I))x.
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We use the notation πε here instead of the generic π to clarify that it is the density function
of εt. We can now write the conditional density of yt given αt, B, ν and R as

(6) π(yt|αt, B, ν, R) = πε

([
V
−1/2
t (rt −Bft)
D
−1/2
t ft

]∣∣∣∣∣ ν,R
)

m∏
i=1

exp(−αti/2).

The following decomposition implies conditional independence relationships in our model:

π(ᾱ, A,Σ, ν, B,R, α, f, r) = π(ᾱ, A,Σ, ν)π(B)π(R) · π(α1|ᾱ, A,Σ)
n−1∏
t=1

π(αt+1|αt, ᾱ, A,Σ)

·
n∏
t=1

[π(ft|αt, ν)π(rt|ft, αt, ν, B,R)] .

2.1. Related MSV models. As mentioned before, different MSV model specifications re-
flect, to a large extent, different choices on how to balance flexibility and parsimony. In our
model, we can restrict the parameters of the marginal distribution of volatility in (3), the
parameters of the conditional distribution of returns and factors given volatility, in (2), or
both.

Consider first the marginal distribution of volatilities. For the most flexible dynamics, we
can specify A and Σ in (3) as full matrices. Alternatively, we can impose prior independence
among volatilities by specifying diagonal A and Σ. Intermediate possibilities are possible,
including the relatively parsimonious specification in Section 2.2, where A and Σ are not
diagonal, but are functions of 2m free parameters each.

Now consider cross-sectional dependence arising from the conditional distribution of re-
turns given parameters and volatilities, marginal of latent factors. We can write the condi-
tional variance of returns as:

(7) Var[rt|αt] = V
1/2
t R11V

1/2
t +BDtB

>.

With no factors (q = 0) the second term disappears. The conditional variance varies
in time, but the conditional correlation R11 is constant. Models with constant correlations
have been studied by Harvey, Ruiz, and Shephard (1994), Danielsson (1998), Smith and Pitts
(2006), Chan, Kohn, and Kirby (2006) and So, Li, and Lam (1997). Other authors, including
Yu and Meyer (2006), Philipov and Glickman (2006), Gourieroux (2006), Gourieroux, Jasiak,
and Sufana (2004), Carvalho and West (2006) and Asai and McAleer (2009), consider models
in which the return innovation correlation is time-varying, which is more realistic. However,
as the number of assets increases, the estimation of a separate time varying correlation matrix
becomes very challenging. Also, when correlation and volatility are modelled separately, it
is more difficult to capture co-movements of correlations and volatility.

Introducing mean factors is another way to introduce time-varying correlations. Here,
co-movements of asset returns are driven by a small number of latent common factors,
typically modelled as univariate SV processes. Usually, factor MSV models specify R11 = I,
in which case Var[rt|αt] = Vt+BDtB

>. Mean factor models are parsimonious, they give time
varying conditional correlations and they have a natural link with factor models in finance,
which hold that the expected return of an asset is a linear function of various factors. In
addition, mean factor structure allows the conditional correlations and conditional variances
to covary in a way that is broadly consistent with well known stylized facts. Longin and
Solnik (2001) and Ang and Chen (2002) document a positive correlation between conditional
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variances and conditional correlations. Given all these characteristics, factor MSV models
have become popular in the literature. The basic model assumed normal returns and constant
factor loadings. See, for example, Jacquier, Polson, and Rossi (1995), Pitt and Shephard
(1999) and Aguilar and West (2000). Other studies proposed extensions such as jumps in
the return equation and heavy-tailed returns (Chib, Nardari, and Shephard (2006)), time
varying factor loading matrices and regime-switching factors (Lopes and Carvalho (2007))
or first-order autoregressive factors (Han (2006)). See Chib, Omori, and Asai (2009) for a
review and comparison of different MSV models.

If we compare these models to ours, we notice that ours is fairly general and incorporates
some other specifications as special cases. In its most general version, without parameter
restrictions, the model allows for cross-sectional volatility dependence, time-varying condi-
tional correlations through the specification of a mean factor structure; and cross-sectional
conditional return dependence through copulas. The conditional variance matrix of returns
in equation (7) is time-varying. The conditional correlation matrix is also time varying, and
covaries with the conditional variances.

2.2. Prior Distributions. We first describe a prior for a low dimensional specification of
ᾱ, A, Σ, ν, and B. We parameterize A and Σ in the following parsimonious way:

(8) A = diag(λ) +

[
(1/p)δι>p 0

0 0

]
. Σ = (diag(σ))2 +

[
ββ> 0

0 0

]
,

where σ and λ are m × 1, β and δ are p × 1 and ιp is the p × 1 vector of ones. The log
volatility series for the q factors are conditionally independent given Σ and A. The log
volatility vector α has a factor structure—Σ is the sum of a positive definite diagonal matrix
(diag(σ))2 and a rank-one positive semi-definite matrix ββ>. The matrix A is determined by
the (p+ q)-vector λ and the p-vector δ. Writing the conditional mean equation by equation
shows that each conditional mean depends linearly on both the same-equation lagged value
and the lagged arithmetic average:

E[αti|αt−1, A,Σ] = (1− λi − δi)ᾱi + λiαt−1,i + δi
1

p

p∑
j=1

αt−1,j.

We organize the parameters associated with each series i (a return for i ≤ p or a factor
for i > p) as

θi =

{(
ᾱi, tanh−1(λi), tanh−1(λi + δi), log σi, βi/σi, log νi

)>
, 1 ≤ i ≤ p,(

tanh−1(λi), log σi, log νi
)>
, p+ 1 ≤ i ≤ m,

Bi = (Bi1, . . . , Biq), i = 1, . . . , p.

and let θ = (θ>1 , . . . , θ
>
m)>. The elements of θi and Bi are mutually independent and Gaussian.

The log(·) and tanh−1(·) functions map parameters defined on [0,∞) and (−1, 1) to the real
line. The posterior distribution of θ is closer to Gaussian than that of the untransformed
parameters; this improves numerical efficiency.

Prior means and standard deviations for the “Getting it right” exercise and for the currency
application are shown in Table 2. The “Getting it right” simulation exercise, described below,
is meant to formally test the correctness of our posterior simulation methods. For this, we
use a relatively tight prior that favours lower autocorrelations. This reduces dependence
across variables in this simulation, increasing numerical efficiency and thereby increasing the
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power of the correctness tests for a given amount of simulation. The prior used for inference
is more diffuse, as it intended to cover all plausible regions of the parameter space.

Getting it right Currency data
Parameter mean standard deviation mean standard deviation

ᾱi ln(0.0032) ln(1.252) ln(0.0032) ln(3.02)
tanh−1(λi) tanh−1(0.96) 0.2 tanh−1(0.98) 0.2

tanh−1(λi + δi) tanh−1(0.96) 0.2 tanh−1(0.98) 0.2
log σi ln(ln(1.25)) 0.1 ln(ln(2.0)) 0.2
βi/σi 0.0 0.2 0.0 0.5
log νi ln(20.0) ln(1.25) ln(20.0) ln(2.0)

Bij , j = 1, . . . , q 0.0 0.002 0.0 0.003
Table 2. Prior means and standard deviations of series-specific parameters.

The prior distribution for the A matrix is in fact a truncated distribution, with truncation
to the region where the eigenvalues of AA> are in the unit circle. Since the probability, in
the untruncated prior, that an eigenvalue lies outside the unit circle is low, the truncated
prior is similar to the untruncated one.

The likelihood function is invariant to many parameter transformations. Imposing inde-
pendence of the factor series, as we do with our prior, rules out some but not all of these
transformations. There remain sign and labelling invariance in factors and their associated
loadings: we can either multiply both the j’th column of B and the j’th factor series by
-1, or exchange the j’th and k’th columns of B and the j’th and k’th factor series without
changing the likelihood. The likelihood is also invariant to multiplying β by -1. In the
empirical exercise, we impose sign and labelling restrictions to break invariance.

We now describe a prior distribution for the correlation matrix R. A common approach is
to put a prior on its Cholesky factor L. The condition that all diagonal elements of R equal
one is equivalent to the condition that all rows of L have unit length.

We modify this approach so that the prior is invariant to the ordering of the series. For
intuition, note that for a given R, the Cholesky factor L is not the only matrix V with
rows of unit length satisfying V V > = R: for any orthogonal matrix C, V ≡ LC is another.
We specify a prior on V—inducing a prior on R = V V >—where the rows vi of V are iid
(although exchangeability would suffice for order invariance). The cost is that V has a
larger number of non-zero elements than L. The elements of V are not identified, but since
V V > is, this is not a serious concern. The rows of V are points on the unit hypersphere
of dimension p; seeing this may make it easier to understand the prior and how we draw R
from its conditional posterior. For i = 1, ..., p, let ζi ≡ cos−1(Vi1), the angle between row vi
and (1, 0, ..., 0). We specify a prior for ζi and let vi be uniformly distributed on the surface
of the (p− 1)-dimensional hypersphere (of radius sin ζi) at an angle ζi away from (1, 0, ..., 0).
Thus π(vi) ∝ π(ζi) sinp−2 ζi. In our applications, we use ζi/π ∼ Be(40, 40); using simulations
we estimate the prior mean and standard deviation of off-diagonal elements of R as 0.000
and 0.326. This is an informative prior shrinking correlations towards zero, which makes up
for the large number of parameters. In this way, we favour factor structure over correlated
innovations while still allowing for correlations that are not well captured by factors.
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3. Posterior inference using MCMC

We use a five-block Gibbs sampler to simulate the posterior distribution. Each block is
described in one of the following sections.

3.1. Draw of θi, αi, i = 1, . . . ,m. We draw (θi, αi) as a single block. Our proposal of (θi, αi)
consists of a random walk proposal of θ∗i followed by a proposal of α∗i given θ∗i . We accept
(θ∗i , α

∗
i ) with probability

min

(
1,
π(θ∗i )π(α∗i |θ∗i , θ−i, α−i)π(y|α∗i , α−i, θ∗i , θ−i, B,R)

π(θi)π(αi|θ, α−i)π(y|α, θ, B,R)
· g(α∗i |θ∗i , θ−i, α−i, B,R)

g(αi|θ, α−i, B,R)

)
,

where g(α∗i |θ∗i , θ−i, B,R) is the conditional proposal density for α∗i given θ∗i .
The random walk (θ∗i −θi) is Gaussian with mean zero and variance Ξ. We obtain Ξ using

an adaptive random walk Metropolis algorithm, described in Vihola (2011), during a burn-in
period in which Ξ is adjusted after each draw to track a target acceptance probability. We
use the final value of Ξ at the end of the burn-in period for all future draws; ending the
adaptation ensures that our posterior simulator is truly Markov.

We draw α∗i |θ∗i , θ−i, α−i, B,R using the HESSIAN method in McCausland (2012). The
HESSIAN method uses an approximation g(α|y) of π(α|y) for univariate models in which
α ∼ N(Ω̄−1c̄, Ω̄), with Ω̄ tridiagonal and π(y|α) =

∏n
t=1 π(yt|αt). It requires one to specify

the precision Ω̄ and covector c̄ and provide routines to compute the first five derivatives of
log π(yt|αt) with respect to αt. Here states are multivariate, but conditioning on the other
volatility series (denoted α−i) yields a univariate model for αi amenable to the HESSIAN
method. The conditional density we need to approximate is

π(αi|α−i, y) ∝ π(αi|α−i)
n∏
t=1

π(yt|αt).

In Appendix A, we provide Ω̄(i) and c̄(i), in terms of Ω̄ and c̄, such that αi|α−i ∼
N((Ω̄(i))−1c̄(i), Ω̄(i)). Ω̄(i) is tridiagonal, as required by the HESSIAN method.

We need to compute five derivatives of log π(yt|αti, αt,−i) with respect to αti at any point.
We do not need analytic expressions; instead we use automatic routines to combine deriva-
tives of primitive functions according to Faa di Bruno’s rule, a generalization of the chain
rule to higher derivatives. Appendix B describes how we compute the required derivatives.

3.2. Draw of (B, f). Here we update B and f in a way that does not change the values
of the matrix-vector products Bft, t = 1, . . . , n. While the block is redundant—we are also
updating B and f elsewhere—B and f are less well identified than the product Bf and this
block improves posterior mixing of both B and f . At the same time, it is computationally
cheap: since the Bft do not change, we do not need to evaluate π(r|θ, B, α, f).

We first draw a random diagonal q×q matrix Λ, where nΛii ∼ iidχ2(n). With probability
1/2, we form proposals B∗ = BΛ, f ∗t = Λ−1ft, t = 1, . . . , n and with complementary
probability, we form B∗ = BΛ−1, f ∗t = Λft, t = 1, . . . , n. The acceptance probabilities are,
respectively,

min

(
1, |Λ|−(n−p)π(B∗)

∏n
t=1 π(f ∗t |α, ν)

π(B)
∏n

t=1 π(ft|α, ν)

)
, min

(
1, |Λ|(n−p)π(B∗)

∏n
t=1 π(f ∗t |α, ν)

π(B)
∏n

t=1 π(ft|α, ν)

)
.
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The factors |Λ|−(n−p) and |Λ|(n−p) are determinants of the Jacobian matrices for the linear
transformations of the ft and the p rows of B. The computational cost of this draw is low,
and in the applications, we repeat the update of (B, f) ten times.

3.3. Draw of B. We draw each row Bi using a Gaussian proposal approximating its condi-
tional posterior distribution. The approximate distribution is what the conditional posterior
distribution would be if the Student’s t degrees of freedom νi were all infinite and the corre-

lation matrix R were equal to I. Thus the proposal distribution is B∗i ∼ N
(

¯̄H−1B ¯̄cB,
¯̄H−1B

)
,

where

¯̄HB = H̄B +
n∑
t=1

e−αtiftf
>
t and ¯̄cB =

n∑
t=1

e−αtirtft.

Here, H̄B is the diagonal prior precision matrix of any row of Bi. Each of its diagonal
elements is the prior precision of an element of Bij, the reciprocal of the square of the prior
standard deviation. Denote the proposal density by g(B∗i ). We accept the proposal B∗i with
probability

min

(
1,
π(B∗i )

π(Bi)

g(Bi)

g(B∗i )

π(y|θ, α,B∗i , B−i, R)

π(y|θ, α,B,R)

)
.

3.4. Draw of f . We draw each ft using a Gaussian proposal that approximates its con-
ditional posterior distribution. Again, the approximate distribution is what the condi-
tional posterior distribution would be if the νi were all infinite and the correlation ma-

trix R were equal to I. Thus the proposal distribution is f ∗t ∼ N
(

¯̄H−1f ¯̄cf ,
¯̄H−1f

)
, where

¯̄H ≡ B>V −1t B + D−1t and ¯̄c ≡ B>V −1t rt. Denote the proposal density by g(f ∗t ). We accept
the proposal f ∗t with probability

min

(
1,
q(ft)

q(f ∗t )

π(rt, f
∗
t |αt, θ, B,R)

π(rt, ft|αt, θ, B,R)

)
.

3.5. Draw of R. We draw rows vi of V one at a time, using a random walk (on the p-
dimensional unit hypersphere) proposal. The direction is uniformly distributed and the arc
length ϑ, in radians, has a Beta distribution scaled to the interval [0, π]. In practice, we
draw ϑ/π ∼ Be(1, 199) and a d ∼ N(0, Ip) that determines the direction, then construct

v∗i = cosϑ · vi + sinϑ · d⊥
||d⊥||

, where d⊥ = d− vid

||vi||2
vi,

which we accept with probability

min

(
1,
π(y|α, θ, B,R∗)π(v∗i )

π(y|α, θ, B,R)π(vi)

)
.

Once the sufficient statistic for drawing R is constructed, the marginal cost of drawing R
is low; in our application, we update each vi ten times. Further repetition does little to
improve numerical efficiency.
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4. Getting it Right

We tested the correctness of our posterior simulators using a simulation strategy similar
to that proposed by Geweke (2004). We simulated the joint distribution of parameters,
states, factors and data, using a Gibbs sampler consisting of all the blocks in Section 3 and
an additional block, described in Appendix C, to update the distribution of returns given
parameters, states and factors. A testable implication of the correctness of our posterior
simulators is that this sampler has a stationary distribution whose marginal on the parameter
subspace agrees with the specified prior distribution of parameters.

We obtain a sample {(θ(j)1 , . . . , θ
(j)
m )}Jj=1 of size J = 107 and construct, for i = 1, . . . ,m and

j = 1, . . . , J the vectors z(i,j) ≡ L−1i (θ
(j)
i −µi), where µi is the prior mean and Li is the lower

Cholesky factor of the prior variance of θi. If the θ
(j)
i are truly multivariate Gaussian with

variance LiL
>
i , the elements of z(i,j) are iid N(0, 1). The vectors z(i,j) have length Ki = 6

for i = 1, . . . , p and length Ki = 3 for i = p + 1, . . . ,m. Since the z(i,j), i = 1, . . . ,m, are
independent, we have

∑m
i=1 z

>
i zi ∼ χ2(6p+ 3q).

We compute the following sample frequencies for all quantiles Q = 0.1, 0.3, 0.5, 0.7, 0.9,
return/factor indices i = 1, . . . ,m, and parameter indices k = 1, . . . , Ki:

Î
(Q)
ik =

1

J

J∑
j=1

1
(
z
(i,j)
k ≤ Φ−1(Q)

)
,

and report them in Table 3. Each row except the last is associated with a particular i and
k; each column, with a particular quantile Q. We also construct for the same quantiles, the
sample frequencies

Î
(Q)
0 =

1

J

J∑
j=1

1

(
m∑
i=1

(z(i,j))>z(i,j) ≤ F−1(Q)

)
,

where F is the cdf of the χ2 distribution with 6p + 3q degrees of freedom. We report these
in the last line of Table 3.

We should observe sample frequencies close to Q. Table 3 shows, with the sample frequen-

cies Î
(Q)
ik , their estimated numerical errors s

(Q)
ik , obtained using the method of batch means.

In all cases, the sample frequencies are very similar to their respective population values.

5. An Exchange Rate Application

5.1. Data. We analyze daily returns of 10 currencies relative to the US dollar: the Australian
Dollar (AUD), Brazilian Real (BRL), Euro (EUR), Japanese Yen (JPY), Mexican Peso
(MXN), New Zealand Dollar (NZD), Singapore Dollar (SGD), Swiss Franc (CHF), British
Pound (GBP), and Canadian Dollar (CAD). We obtained noon spot rates from the Bank
of Canada, from July 8, 2005 to July 8, 2015 inclusive and computed log returns between
consecutive weekdays that are not bank holidays, giving 2505 observations for each currency.

Table 4 presents some descriptive statistics. The sample standard deviation varies a lot,
with the Brazilian Real, and the Australian and New Zealand Dollars being the most volatile
and the Singapore dollar the least. Sample skewness varies considerably in magnitude, with
equal numbers of currencies of each sign. All series present excess kurtosis, and this too
varies considerably, from 6.1 for the Euro to 46.7 for the Swiss Franc. The first-order sample
autocorrelations of squared returns suggest varying levels of volatility persistence. The log
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i k Î
(0.1)
i,k s

(0.1)
i,k Î

(0.3)
i,k s

(0.3)
i,k Î

(0.5)
i,k s

(0.5)
i,k Î

(0.7)
i,k s

(0.7)
i,k Î

(0.9)
i,k s

(0.9)
i,k

1 1 0.0999 0.00038 0.2995 0.00067 0.4993 0.00081 0.6996 0.00069 0.9001 0.00041
1 2 0.0998 0.00035 0.3000 0.00054 0.4999 0.00063 0.7002 0.00063 0.9003 0.00034
1 3 0.1003 0.00034 0.3004 0.00057 0.5004 0.00059 0.7002 0.00057 0.9000 0.00036
1 4 0.1001 0.00034 0.2996 0.00057 0.4995 0.00064 0.6998 0.00058 0.8999 0.00038
1 5 0.1002 0.00037 0.3007 0.00054 0.5013 0.00057 0.7008 0.00052 0.9002 0.00032
1 6 0.1006 0.00037 0.3007 0.00058 0.5008 0.00063 0.7009 0.00058 0.9005 0.00034
2 1 0.1003 0.00047 0.2999 0.00084 0.4999 0.00098 0.6998 0.00085 0.8999 0.00048
2 2 0.1004 0.00035 0.3000 0.00057 0.4996 0.00065 0.6999 0.00052 0.8999 0.00034
2 3 0.0997 0.00034 0.2996 0.00055 0.4988 0.00060 0.6997 0.00053 0.8996 0.00034
2 4 0.0997 0.00037 0.2990 0.00060 0.4993 0.00064 0.6994 0.00052 0.8996 0.00032
2 5 0.0999 0.00035 0.3006 0.00058 0.5005 0.00063 0.7000 0.00051 0.9000 0.00032
2 6 0.1001 0.00036 0.3002 0.00062 0.5007 0.00065 0.7006 0.00057 0.9002 0.00033
3 1 0.1000 0.00023 0.2993 0.00053 0.4998 0.00059 0.6997 0.00046 0.8998 0.00030
3 2 0.1000 0.00029 0.3006 0.00046 0.5002 0.00052 0.7004 0.00048 0.9002 0.00031
3 3 0.1002 0.00028 0.3004 0.00049 0.5003 0.00055 0.7003 0.00052 0.9004 0.00028
4 1 0.1002 0.00027 0.3002 0.00052 0.4998 0.00052 0.7002 0.00040 0.8996 0.00026
4 2 0.1008 0.00029 0.3006 0.00050 0.5004 0.00055 0.7005 0.00052 0.9002 0.00029
4 3 0.0999 0.00027 0.3003 0.00048 0.5002 0.00054 0.7001 0.00048 0.8996 0.00026

0.0995 0.00033 0.2994 0.00053 0.4996 0.00061 0.7000 0.00057 0.9001 0.00036
Table 3. “Getting it right” sample quantiles and their numerical standard errors

Mean SD Skewness Kurtosis r2t autocorr. Log variance
AUD 0.05 14.42 -0.638 16.0 0.27 -9.40
BRL -3.10 16.21 0.015 15.5 0.40 -9.16
EUR -0.75 10.07 0.208 6.1 0.05 -10.12
JPY -0.72 10.48 0.166 7.0 0.10 -10.03

MXN -3.86 11.33 -0.819 17.7 0.54 -9.88
NZD 0.03 14.60 -0.320 7.8 0.12 -9.37
SGD 2.31 5.65 -0.034 8.1 0.11 -11.27
CHF 3.20 11.90 1.646 46.7 0.13 -9.78
GBP -1.23 9.75 -0.167 8.3 0.12 -10.18
CAD -0.41 10.10 0.066 9.1 0.13 -10.11

Table 4. Descriptive statistics for log returns: annualized mean (%), annualized standard deviation
(%), skewness, kurtosis, squared return autocorrelation and log variance.

variance figures, though redundant, allow for easy comparison with the ᾱi parameters, which
give mean idiosyncratic log conditional variances.

In Table 5 we show the sample correlation matrix. Correlations vary from -0.16 to 0.84.
The strongest negative correlation is for the pair (MXN, JPY) and the strongest positive
correlation is for the pair (AUD, NZD).

5.2. Order selection. Ideally, we would compute the posterior distribution of q, the number
of factors, and report results for the value (or values) of q with non-negligible posterior
probability. As this would involve computing Bayes factors, and since we can only integrate



14 MULTIVARIATE STOCHASTIC VOLATILITY USING THE HESSIAN METHOD

AUD BRL EUR JPY MXN NZD SGD CHF GBP CAD
AUD 1.00 0.59 0.60 -0.07 0.60 0.84 0.65 0.37 0.59 0.68
BRL 0.59 1.00 0.39 -0.15 0.66 0.50 0.46 0.19 0.38 0.50
EUR 0.60 0.39 1.00 0.21 0.39 0.59 0.65 0.70 0.66 0.53
JPY -0.07 -0.15 0.21 1.00 -0.16 -0.04 0.18 0.36 0.07 -0.08

MXN 0.60 0.66 0.39 -0.16 1.00 0.52 0.50 0.19 0.39 0.53
NZD 0.84 0.50 0.59 -0.04 0.52 1.00 0.61 0.38 0.58 0.62
SGD 0.65 0.46 0.65 0.18 0.50 0.61 1.00 0.47 0.53 0.55
CHF 0.37 0.19 0.70 0.36 0.19 0.38 0.47 1.00 0.45 0.32
GBP 0.59 0.38 0.66 0.07 0.39 0.58 0.53 0.45 1.00 0.52
CAD 0.68 0.50 0.53 -0.08 0.53 0.62 0.55 0.32 0.52 1.00

Table 5. Sample correlation matrix for Bank of Canada currency panel
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Figure 1. EUR idiosyncratic volatility: posterior mean and standard deviation, nse for the mean

out one volatility sequence, this would be difficult if not infeasible. We first performed
a static principal components analysis to suggest the number of factors. Horn’s Parallel
analysis, which recommends retaining factors whose eigenvalues are greater than the 95th
percentile of the eigenvalues of iid data, suggests two factors. The first three factors account
for fractions 0.549, 0.155, 0.088 (cumulatively, 0.549, 0.704 and 0.792) of total variance. We
obtained full results for two and three factors and found that the third factor was important
in ways that a principal components analysis misses. Specifically, the volatility of volatility
of the third factor is particularly high, and the factor loadings are quite high for nearly all
of the currencies: in eight of ten cases, the posterior mean of the third factor loading is
larger in absolute value than that of the second; in nine, the posterior mean is more than
four posterior standard deviations from zero. These results, described in more detail below,
show that in a few highly volatile periods, the third factor accounts for much of the common
variation across currencies.

5.3. Estimation results. We report results for ten univariate models and the full multi-
variate model. We use comparable priors in the two models and compare corresponding
posterior distributions. Throughout Section 5.3, numerical standard error (nse) and rela-
tive numerical efficiency (rne) are computed using the R library coda, which uses a spectral
density method.
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Figure 2. JPY idiosyncratic volatility: posterior mean and standard deviation, nse for the mean
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Figure 3. First factor series: top panel gives the posterior mean of ft1; bottom panel gives the
posterior mean and standard deviation of αt,11 (the log volatility of ft1), and the numerical standard
error for the mean of αt,11.
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Figure 4. Second factor series: top panel gives the posterior mean of ft2; bottom panel gives
the posterior mean and standard deviation of αt,12 (the log volatility of ft2), and the numerical
standard error for the mean of αt,12.
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Figure 5. Third factor series: top panel gives the posterior mean of ft3; bottom panel gives the
posterior mean and standard deviation of αt,13 (the log volatility of ft3), and the numerical standard
error for the mean of αt,13.

We generated a posterior sample of size 60000 and discarded the first 10000 draws. Then
we imposed three identification restrictions, chosen so that the posterior density is low near
the boundary of the restricted region. To break sign invariance of loadings and factors, we
set the Euro factor loadings to be positive, multiplying columns of B and the corresponding
factor series by -1 as needed. To break labelling invariance of loadings and factors, we
ordered the factors so that Euro loadings were in descending order, exchanging columns of
B and factor series as needed. To break sign invariance of the vector β, we set the element
associated with the Euro to be positive, multiplying β by -1 as needed.

Table 6 summarizes the posterior distribution of the mean vector ᾱ and the autocorrelation
matrix A of the log volatility process αt. Recall that A is parameterized, in equation (8), in
terms of the vectors λ and δ. For each currency i, we give the posterior mean and standard
deviation of ᾱi, the mean log idiosyncratic volatility; λi, the coefficient of the same-series
lagged value; and δi, the coefficient of the lagged arithmetic average. The first four numeric
columns report results for independent SVt models, where δ = 0. The next four numeric
columns give results for the full MSV model, where A has non-zero off-diagonal elements.
In all cases, the parameter ᾱi giving the mean log idiosyncratic volatility is considerably
smaller for the factor model—in many cases, it is much smaller—indicating that the three
factors capture a good deal of common variation.

The autoregressive coefficient λi differs little between models. Except for AUD and MXN,
the posterior mean of δi is within 1.5 posterior standard deviations of zero; for AUD and
MXN, it is between 1.5 and 2.0. The δi appear to matter little, but their posterior means
are negative for all but one currency: individual log-volatilities appear to be slightly repelled
from their cross-sectional average.

Table 7 summarizes the posterior distribution of the unconditional variance Σ of the
idiosyncratic log volatility processes and the degrees of freedom parameters νi. Equation (8)
parameterizes Σ in terms of the vectors σ and β. For each currency i, the table reports the
posterior mean and standard deviation of σi and βi; diagonal and off diagonal elements of
Σ are Σii = σi + β2

i and Σij = βiβj. Here there are much stronger signs of dependence. The
common sign of the posterior means of the βi indicates positive unconditional correlation
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for all currency pairs. Many of the correlations are well above zero, with some greater than
0.5. The νi have lower posterior means in the MSV model than in the univariate models
for most of the currencies, suggesting that while there is a lot of common variation across
currencies, there are some large shocks to individual currencies that are not well accounted
for by the factors. The posterior distributions of the νi vary widely across currencies: the
posterior mean ranges from 4.40 for JPY to 32.11 for BRL.

Table 8 reports posterior means and standard deviations of the parameters governing the
three factor series. For the three factors, log-volatility persistence is high and similar to that
of the idiosyncratic log-volatilities. The first factor has a lower degrees-of-freedom param-
eter, indicating high conditional kurtosis. The third factor has an unconditional standard
deviation of log-volatility that is considerably higher than the other two.

Table 9 reports posterior means and standard deviations of factor loadings Bij. Recall
that the indices j = 1, 2, 3 are chosen so that the Euro loadings are in descending order. For
almost all currencies, the first factor loading is highest in absolute value with high posterior
probability. The common sign suggests the factor is related to the US dollar, the numeraire
currency. Loadings for the second factor are much lower in absolute value, for most of the
currencies. Only EUR, CHF, AUD and NZD have loadings greater than 0.001 in absolute
value, with those of the European currencies (EUR, CHF) having the opposite sign of those
of the Australasian (AUD, NZD) ones. Loadings for the third factor are remarkably high
except for SGD and CHF, but recall the high unconditional variance of the factor’s log
volatility: the factor is close to zero except during a few periods of high volatility. So while
the variance attributable to the third factor is relatively low on average, it is quite high
during these highly volatility periods.

Table 10 shows posterior moments of the elements of R, the copula correlation matrix. The
mean of most, but definitely not all, copula correlations is within two standard deviations
from zero and much closer to zero than the sample correlations in Table 5, as we would
expect since the factors are capturing much of the cross-sectional dependence. The mean of
the MXN-BRL correlation is nearly eight standard deviations away from zero. The MXN-
JPY, MXN-SGD and MXN-CAD correlations also have means that lie outside two standard
deviations, as does the AUD-NZD correlation. Even these correlations are quite a bit smaller
than the sample correlations. Although the three factors capture much of the dependence
among currencies, the copula is also clearly capturing some important remaining dependence.

Figures 1 and 2 show the posterior mean and standard deviation of the idiosyncratic
volatility, as well as the numerical standard error (nse) for the posterior mean, for the
currencies EUR and JPY, over time. We prefer this graphical display to the more usual
practice of plotting inter-quantile bands because it makes it easier to see how the variance
of log-volatility varies over time. In these and later figures, we see that at the scale used
to plot the mean and variance of log-volatility, the nse is barely distinguishable from zero.
This is exactly what we are trying to convey; the uncertainty associated with simulation
noise (measured by the nse) is much smaller than the posterior uncertainty (measured by
the posterior standard deviation). The relatively low nse is attributable to the use of the
HESSIAN method. McCausland (2012) documents (Table 3) the high numerical efficiency
of this method compared to auxiliary mixture model methods.

Figures 3 through 5 show the posterior mean and standard deviation of the three factors,
through time, and the posterior mean and standard deviation of the their respective volatil-
ities. Again, the numerical standard error of the mean (this time for the factors and their
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volatility) shows that the uncertainty associated with simulation noise is small compared
to the posterior uncertainty. Consistent with the posterior distributions of their respective
parameters, the first factor series exhibits a large number of outliers. The third factor series
exhibits a great deal of variation in volatility; it is very important in volatile spells and
unimportant during tranquil ones.

6. Conclusions

We have introduced a new approach to posterior simulation for MSV models, using the
HESSIAN method, a numerically efficient method for drawing univariate volatility series; it
can be applied one series at a time. The method is flexible, allowing model specifications
with different types of dependence. It is less model specific than auxiliary mixture methods,
and does not require that the model be transformable to a form where volatility sequences
are independent and transformed innovations are identically distributed. We tested and
failed to reject the hypothesis that our implementation is correct.

We now revisit the features described in Section 1.4, in the light of our empirical results,
illustrating their importance. We get time-varying conditional correlations by incorporating
factors in the return equation; the factors are independent SV processes with heterogeneous
Student’s t innovations. Unsurprisingly, we find abundant evidence for factors. More in-
terestingly, we find evidence that factors are fat-tailed to different degrees, justifying the
flexibility we allow by not requiring that factors be multivariate Gaussian or any mixture of
these such as the multivariate Student’s t.

We also find evidence that idiosyncratic log-volatility (return volatility remaining after
conditioning on factors) features cross-sectional dependence. We allowed non-diagonal au-
tocorrelation (A) and unconditional variance (Σ) of idiosyncratic log-volatility, but in a par-
simonious way. The posterior distribution of the coefficients δi of the lagged cross-sectional
average points to a tendency for log-volatilities to be repelled away from this average, al-
though the evidence is not strong. The evidence for positive unconditional correlation across
log-volatilities is much stronger.

We incorporate copulas to allow conditional return dependence given factors, without
giving up heterogeneity in marginals. We saw that the evidence for such heterogeneity
(here, in the νi parameters of the Student’s t) was strong. The correlation matrix defining the
Gaussian copula has a somewhat informative prior, designed to shrink correlations towards
zero. In this way we favour factor structure but allow for correlations that are not well
captured by the factors. It turns out that most correlations have distributions with non-
negligible mass on both sides of zero. However, five out of forty-five correlations have a
posterior mean more than two posterior standard deviations away from zero, including one
with a mean nearly eight standard deviations away. The factors capture much of the common
variation in returns, but the copula clearly captures some remaining conditional dependence.

We find three volatility factors to be important, despite the fact that a (static and ho-
moscedastic) principal components analysis favours two. The volatility of the third factor
varies widely over time, in such a way that the factor picks up a lot of common variation
during some highly volatile periods and stays close to zero during more tranquil periods.

Appendix A. Computing Ω̄(i) and c̄(i)

Here we compute Ω̄(i) and c̄(i), the conditional precision and covector of the Gaussian
conditional distribution αi|α−i, in terms of Ω̄ and c̄, the prior precision and covector of α.
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Ω̄ is a nm× nm block band-diagonal matrix. We denote by Ω̄st, s, t = 1, . . . , n, the m×m
submatrix at row (s− 1)m+ 1 and column (t− 1)m+ 1. The non-zero submatrices are

Ω̄11 = Σ−10 + A>Σ−1, Ω̄nn = Σ−1,

Ω̄tt = Σ−1 + A>Σ−1A, t = 2, . . . , n− 1,

Ω̄>t+1,t = Ω̄t,t+1 = −A>Σ−1, t = 1, . . . , n− 1.

The co-vector is a nm× 1 vector stacking n m× 1 subvectors c̄t, given by:

c̄1 = Σ−10 ᾱ− A>Σ−1(I − A)ᾱ, c̄n = Σ−1(I − A)ᾱ.

c̄t = Σ−1(I − A)ᾱ− A>Σ−1(I − A)ᾱ, t = 2, . . . , n− 1.

We now derive Ω̄(i) and c̄(i). We know π(αi|α−i) ∝ π(α) as a function of αi. Matching
coefficients of first and second order terms of log π(αi|α−i) gives the non-zero elements

Ω̄
(i)
tt = (Ω̄tt)ii, Ω̄

(i)
t,t+1 = Ω̄

(i)
t+1,t = (Ω̄t,t+1)ii.

c̄
(i)
t = (c̄t)i −

∑
j 6=i

[
(Ω̄tt)jiαtj + (Ω̄t,t+1)jiαt+1,j + (Ω̄t−1,t)jiαt−1,j

]
.

Appendix B. Computing log π(yt|αt, ν, B,R) and derivatives

Using equations (4), (5), and (6), we can write log π(yt|αt, B, ν, R) as

log π(yt|αt, ν, B,R) =− 1

2

{
log |R|+ log 2π + x>t (R−1 − I)xt +

m∑
i=1

[
αti + (νi + 1) log

(
1 +

ε2ti
νi

)]}

+
m∑
i=1

[
log Γ

(
νi + 1

2

)
− log Γ

(νi
2

)
− 1

2
log(νiπ)

]
,

where xt = (xt1, . . . , xtm) and for i = 1, . . . ,m, xti = Φ−1(uti), uti = Fε(εti|νi)), and

εti =

{
exp(−αti/2)(rti −

∑q
j=1Bijftj), i = 1, . . . , p,

exp(−αti/2)ft,i−p, i = p+ 1, . . . ,m.

We can evaluate log π(yt|αt, B, ν, R) as a function of αti bottom up, evaluating the εti at αti,
then the uti at εti, then the xti at uti then log π(yt|αt, B, ν, R) at εt and xt.

We require five derivatives of log π(yt|αt, B, ν, R) with respect to αti, evaluated at αti.
Because it is a multi-level compound function of the αti, computing these in closed form
would be tedious and error-prone. Instead, we compute any values we need, bottom up,
using Faà di Bruno’s formula at each step to compute derivatives of a compound function
by combining derivatives of its component functions. We compute, in order,

(1) five derivatives of ψ(αti) ≡ log πε(e
−αti/2ηti|θi) with respect to αti at αti (B.1).

(2) five derivatives of x>(R−1 − I)x with respect to xti at xti, as described in B.2.
(3) five derivatives of xti with respect to uti at uti, as described in B.3.
(4) five derivatives of uti with respect to αti at αti, as described in B.4.
(5) five derivatives of xti with respect to αti at αti, using the Faà di Bruno formula to

combine the derivatives of xti with respect to uti at step 3 and the derivatives of uti
with respect to αti at step 4.
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(6) five derivatives of x>(R−1 − I)x with respect to αti at αti, using the Faà di Bruno
formula to combine the derivatives of x>(R−1− I)x with respect to xti at step 2 and
the derivatives of xti with respect to αti at step 5.

(7) five derivatives of log π(yt|αt, θ, B,R) with respect to αti at αti using the derivatives
at steps 1 and 6.

We define ηt = (ηt1, . . . , ηtm)> = ((rt −Bft)>, f>t )> to simplify notation below.

B.1. Derivatives of ψ(αti) with respect to αti. For the special case of Student’s t F,

πε(e
−αti/2ηti|vi) =

Γ(νi+1
2

)
√
νiπΓ(νi

2
)

(
1 +

e−αtiη2ti
νi

)− νi+1

2

ψ(αti) = log

[
Γ(νi+1

2
)

√
νiπΓ(νi

2
)

]
− νi + 1

2
log(1 + sti)

where sti ≡ e−αtiη2ti/νi. Noting that ∂sti/∂αi = −sti, we compute

ψ′(αti) =
νi + 1

2

sti
1 + sti

, ψ′′(αti) = −νi + 1

2

sti
(1 + s2ti)

,

ψ′′′(αti) =
νi + 1

2

sti(1− sti)
(1 + sti)3

, ψ(4)(αti) = −νi + 1

2

sti(1− 4sti + s2ti)

(1 + sti)4
,

ψ(5)(αti) =
νi + 1

2

sti(1− 11sti + 11s2ti − s3ti)
(1 + sti)5

.

B.2. Derivatives of x>(I −R−1)x with respect to xti. Here we compute partial deriva-
tives of log c(u1, . . . , um) with respect to the ui. We can write

log cR(u1, . . . , um) = log φR(Φ−1(u1), . . . ,Φ
−1(um))−

m∑
i=1

log φ(Φ−1(ui))

=
1

2
|H|+ 1

2
x>(I −R−1)x,

where x = (x1, . . . , xm) = (Φ−1(u1), . . . ,Φ
−1(um)). The gradient and Hessian of log(cR) with

respect to u are as follows; all third order partial derivatives and higher are zero.

∂ log c(u)

∂x
= (I −R−1)x, ∂ log c(u)

∂x∂x>
= I −R−1.

B.3. Derivatives of xti with respect to uti. Differentiating Φ(xi) = ui with respect to ui
gives φ(xi)

∂xi
∂ui

= 1, and thus

∂xi
∂ui

=
1

φ(xi)
,

∂2xi
∂ui

= 2πex
2
ixi,

∂3xi
∂ui

= (2π)3/2e3x
2
i /2(2x2i + 1),

∂4xi
∂ui

= (2π)2e2x
2
i (6x3i + 7xi),

∂5xi
∂ui

= (2π)5/2e5x
2
i /2(24x4i + 46x2i + 7).
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B.4. Derivatives of Fε(e
−αti/2ηti|θi). Here we compute five derivatives of Fε(e

−αti/2ηti|θi)
with respect to αti. We write down the derivatives in terms of ψ(αti) ≡ log πε(e

−αti/2ηti|θi):

∂Fε(e
−αti/2ηti|θi)
∂αti

= πε(e
−αti/2ηti|θi)

(
−1

2
e−αti/2ηti

)
= −ηti

2
e−0.5αti+ψ(αti),

∂2Fε(e
−αti/2ηti|θi)
∂α2

ti

= −ηti
2
e−0.5αti+ψ(αti)[−0.5 + ψ′(αti)]

∂3Fε(e
−αti/2ηti|θi)
∂α3

ti

= −ηti
2
e−0.5αti+ψ(αti)

[
ψ′′(αti) + (−0.5 + ψ′(αti)

2
]

∂4Fε(e
−αti/2ηti|θi)
∂α4

ti

= −ηti
2
e−0.5αti+ψ(αti)

[
ψ′′′(αti) + 3(−0.5 + ψ′(αti))ψ

′′(αti) + (−0.5 + ψ′(αti))
3
]

∂5Fε(e
−αti/2ηti|θi)
∂α5

ti

= −ηti
2
eψ(αti)

[
ψ(4)(αti) + 4(−0.5 + ψ′(αti))ψ

′′′(αti) + 3(ψ′′(αti))
2

+ 6(−0.5 + ψ′(αti))
2ψ′′(αti) + (−0.5 + ψ′(αti))

4
]

Appendix C. Drawing r|α, θ, f, B,R

Here we draw r from π(r|α, θ, f, B,R). We first compute the Cholesky decomposition
R = LL> of the correlation matrix R. Then for each t = 1, ..., n:

(1) Draw z ∼ N(0, Im), set g = Lz so that g ∼ N(0, R).
(2) Compute the integral probability transforms ui = Φ(gi), i = 1, ...,m.
(3) Transform each ui to a Student’s t with νi degree of freedom: τi = F−1ν (ui), where

Fν is the cdf of a Student’s t with νi degrees of freedom.
(4) Scale each of the τi to form εti = τi exp(0.5αti), construct rt = Bft + εt.

Appendix D. Tables of results
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Independent SVt Full Model
Series mean sd nse rne mean sd nse rne

AUD
ᾱi -10.01 0.20 0.001 0.496 -12.21 0.26 0.008 0.020
λi 0.9888 0.0025 0.00002 0.475 0.9868 0.0050 0.00016 0.019
δi -0.0134 0.0080 0.00029 0.015

BRL
ᾱi -9.83 0.19 0.001 0.502 -10.33 0.21 0.005 0.036
λi 0.9788 0.0043 0.00003 0.504 0.9814 0.0055 0.00018 0.018
δi -0.0097 0.0080 0.00029 0.015

EUR
ᾱi -10.49 0.20 0.001 0.493 -14.55 0.63 0.034 0.007
λi 0.9919 0.0020 0.00001 0.445 0.9818 0.0048 0.00020 0.012
δi -0.0085 0.0117 0.00043 0.015

JPY
ᾱi -10.55 0.17 0.001 0.469 -11.95 0.28 0.011 0.012
λi 0.9867 0.0035 0.00002 0.471 0.9872 0.0033 0.00009 0.029
δi -0.0077 0.0054 0.00017 0.021

MXN
ᾱi -10.57 0.20 0.001 0.463 -11.13 0.28 0.008 0.026
λi 0.9849 0.0033 0.00002 0.493 0.9902 0.0032 0.00011 0.017
δi -0.0112 0.0056 0.00019 0.018

NZD
ᾱi -9.82 0.18 0.001 0.414 -11.26 0.16 0.004 0.030
λi 0.9896 0.0026 0.00002 0.463 0.9877 0.0044 0.00011 0.031
δi -0.0050 0.0049 0.00014 0.023

SGD
ᾱi -11.76 0.19 0.001 0.467 -12.82 0.19 0.005 0.037
λi 0.9875 0.0029 0.00002 0.497 0.9842 0.0056 0.00016 0.023
δi -0.0073 0.0070 0.00025 0.015

CHF
ᾱi -10.43 0.18 0.001 0.455 -13.11 0.36 0.012 0.018
λi 0.9896 0.0027 0.00002 0.544 0.9827 0.0047 0.00018 0.014
δi -0.0013 0.0081 0.00024 0.022

GBP
ᾱi -10.55 0.20 0.001 0.426 -11.34 0.18 0.005 0.032
λi 0.9923 0.0019 0.00001 0.490 0.9876 0.0044 0.00013 0.021
δi 0.0014 0.0050 0.00017 0.018

CAD
ᾱi -10.61 0.20 0.001 0.432 -11.27 0.19 0.004 0.041
λi 0.9903 0.0023 0.00002 0.416 0.9901 0.0033 0.00009 0.024
δi -0.0066 0.0044 0.00015 0.018

Table 6. Posterior mean and standard deviation, numerical standard error and relative numerical
efficiency for the parameters ᾱi, λi and δi: at left, independent SVt models; at right, MSV model
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Independent SVt Full Model
Series mean sd nse rne mean sd nse rne

AUD
σi 0.751 0.073 0.000 0.529 0.846 0.090 0.004 0.009
βi 0.630 0.175 0.007 0.011
νi 20.04 8.24 0.07 0.262 10.14 5.36 0.24 0.010

BRL
σi 0.939 0.079 0.001 0.491 0.918 0.089 0.004 0.012
βi 0.638 0.172 0.008 0.010
νi 38.16 21.55 0.15 0.408 32.11 17.97 0.44 0.033

EUR
σi 0.625 0.067 0.000 0.495 1.526 0.207 0.011 0.007
βi 1.793 0.447 0.028 0.005
νi 14.98 4.87 0.04 0.374 25.70 18.81 0.61 0.019

JPY
σi 0.638 0.068 0.000 0.515 0.857 0.116 0.004 0.014
βi 0.132 0.174 0.007 0.013
νi 7.73 1.21 0.01 0.515 4.40 0.63 0.03 0.012

MXN
σi 0.859 0.079 0.001 0.443 0.893 0.093 0.004 0.010
βi 0.698 0.179 0.008 0.011
νi 33.94 18.74 0.12 0.476 16.38 6.64 0.18 0.028

NZD
σi 0.639 0.068 0.000 0.489 0.555 0.071 0.002 0.019
βi 0.200 0.093 0.004 0.011
νi 15.71 5.06 0.04 0.286 6.90 1.28 0.04 0.022

SGD
σi 0.714 0.072 0.000 0.505 0.759 0.080 0.003 0.011
βi 0.487 0.139 0.005 0.014
νi 10.74 2.41 0.02 0.438 7.11 1.21 0.03 0.030

CHF
σi 0.615 0.069 0.000 0.486 1.281 0.129 0.005 0.014
βi 1.262 0.284 0.016 0.006
νi 7.97 1.23 0.01 0.512 6.21 1.63 0.07 0.012

GBP
σi 0.613 0.066 0.000 0.514 0.627 0.070 0.003 0.015
βi 0.306 0.107 0.005 0.010
νi 32.99 16.87 0.13 0.349 19.80 8.41 0.21 0.031

CAD
σi 0.698 0.071 0.000 0.459 0.652 0.071 0.002 0.018
βi 0.282 0.106 0.004 0.012
νi 17.35 6.63 0.06 0.234 26.31 14.41 0.39 0.027

Table 7. Posterior mean and standard deviation, numerical standard error and relative numerical
efficiency for the parameters σi, βiS and νi: at left, independent SVt models; at right, MSV model
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Series mean sd nse rne

f1

λi 0.9904 0.0025 0.00005 0.048
σi 0.592 0.066 0.001 0.060
νi 12.58 3.76 0.10 0.031

f2

λi 0.9879 0.0037 0.00009 0.034
σi 0.593 0.074 0.002 0.028
νi 23.38 12.91 0.32 0.032

f3

λi 0.9853 0.0031 0.00007 0.040
σi 1.279 0.138 0.005 0.013
νi 18.67 12.79 0.39 0.021

Table 8. Posterior mean and standard deviation, numerical standard error and relative numerical
efficiency for the parameters of the factor series, full model with q = 3

Series mean sd nse rne

AUD
Bi1 0.00430 0.00041 0.00002 0.007
Bi2 -0.00170 0.00031 0.00002 0.006
Bi3 0.00331 0.00054 0.00003 0.005

BRL
Bi1 0.00233 0.00030 0.00002 0.007
Bi2 -0.00023 0.00023 0.00001 0.008
Bi3 0.00283 0.00044 0.00003 0.006

EUR
Bi1 0.00416 0.00036 0.00002 0.007
Bi2 0.00236 0.00033 0.00002 0.006
Bi3 0.00106 0.00025 0.00002 0.005

JPY
Bi1 0.00297 0.00032 0.00002 0.006
Bi2 -0.00058 0.00021 0.00001 0.006
Bi3 -0.00210 0.00031 0.00002 0.006

MXN
Bi1 0.00166 0.00022 0.00001 0.007
Bi2 -0.00051 0.00019 0.00001 0.007
Bi3 0.00194 0.00033 0.00002 0.006

NZD
Bi1 0.00435 0.00041 0.00002 0.007
Bi2 -0.00146 0.00031 0.00002 0.006
Bi3 0.00325 0.00054 0.00003 0.005

SGD
Bi1 0.00186 0.00016 0.00001 0.008
Bi2 -0.00019 0.00012 0.00001 0.005
Bi3 0.00080 0.00016 0.00001 0.005

CHF
Bi1 0.00449 0.00037 0.00002 0.008
Bi2 0.00232 0.00034 0.00002 0.005
Bi3 0.00016 0.00026 0.00002 0.005

GBP
Bi1 0.00305 0.00026 0.00001 0.008
Bi2 0.00069 0.00021 0.00001 0.006
Bi3 0.00121 0.00024 0.00001 0.006

CAD
Bi1 0.00232 0.00025 0.00001 0.007
Bi2 -0.00058 0.00019 0.00001 0.006
Bi3 0.00208 0.00035 0.00002 0.006

Table 9. Posterior mean and standard deviation, numerical standard error and relative numerical
efficiency for factor loadings, full model with q = 3
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i/j AUD BRL EUR JPY MXN NZD SGD CHF GBP CAD
AUD 1.000
BRL -0.017 1.000
EUR -0.003 0.009 1.000
JPY -0.003 -0.006 -0.021 1.000
MXN -0.024 0.165 0.019 -0.052 1.000
NZD 0.062 -0.032 -0.013 -0.015 -0.036 1.000
SGD -0.019 0.032 0.030 0.043 0.076 -0.032 1.000
CHF 0.005 -0.011 -0.013 0.040 -0.034 0.021 -0.026 1.000
GBP -0.019 -0.029 0.003 -0.007 -0.015 0.008 -0.004 0.002 1.000
CAD -0.012 0.036 0.003 -0.030 0.072 -0.025 0.007 -0.008 0.018 1.000
AUD 0.000
BRL 0.023 0.000
EUR 0.025 0.024 0.000
JPY 0.024 0.023 0.025 0.000
MXN 0.023 0.019 0.024 0.024 0.000
NZD 0.024 0.020 0.024 0.022 0.021 0.000
SGD 0.023 0.020 0.024 0.022 0.020 0.021 0.000
CHF 0.024 0.021 0.025 0.025 0.022 0.023 0.022 0.000
GBP 0.022 0.020 0.024 0.023 0.019 0.021 0.020 0.023 0.000
CAD 0.023 0.020 0.024 0.023 0.020 0.021 0.020 0.021 0.020 0.000
AUD 0.000
BRL 0.001 0.000
EUR 0.001 0.001 0.000
JPY 0.001 0.001 0.001 0.000
MXN 0.001 0.000 0.001 0.001 0.000
NZD 0.001 0.000 0.001 0.001 0.001 0.000
SGD 0.001 0.000 0.001 0.001 0.001 0.000 0.000
CHF 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000
GBP 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.001 0.000
CAD 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

Table 10. Elementwise posterior mean (upper panel), posterior standard deviation (middle panel)
and numerical standard error (lower panel) of correlation matrix R11
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