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Abstract

The multiplicative inequality (MI) introduced by Sattath and Tversky (1976) is a rare exam-
ple of a simple and intuitively appealing condition relating choice probabilities across choice sets
of different sizes. It is also a testable implication of two models of stochastic discrete choice: the
Elimination by Aspects model of Tversky (1972b) and the independent random utility model.
We prove several results on the multiplicative inequality and its relationship to the regularity
condition. One major result illustrates how little the MI constrains binary choice probabilities:
it implies that every system of binary choice probabilities on a universe of choice objects can be
extended to a complete system of choice probabilities satisfying the MI. In this sense, the MI
is complementary to axioms for binary choice probabilities, of which many have been proposed.
We also discuss choice environments where the multiplicative inequality is implausible.
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1 Introduction

Most theoretical models of choice in economics are built upon algebraic preferences, rather than
stochastic foundations. At the same time, human choice seems irreducibly uncertain. Most applied
work reconciles deterministic models with stochastic data by positing either random preferences
or error terms. Usually, distributions of preferences and errors are given without theoretical jus-
tification. Part of Duncan Luce’s challenge (Luce (1995), Luce (1997)) is to build choice models
that generalize existing deterministic models and that are supported by stochastic foundations. In
a survey of stochastic utility, Fishburn (1999) documents many axioms and conditions on choice
probabilities that have been studied in the literature. Many of these pertain to binary choice prob-
abilities, natural analogues of binary algebraic preferences, including nine stochastic analogues of
transitivity.

Most of the choices economists study are from sets with more than two options. Once algebraic
preferences are specified, and constrained by conditions such as transitivity and others, there is
usually little more to add with regard to multiple choice, since in any choice set, a unique option
is preferred to all others. Modelling stochastic choice from sets with more than two options is
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much less straightforward and requires structure beyond that provided by axioms on binary choice
probabilities alone.

A few axioms have been proposed that relate choice probabilities across choice sets of different
sizes. One of them is the multiplicative inequality (MI) introduced by Sattath and Tversky (1976),
who also establish that the MI is a necessary condition for two different choice models: Tversky’s
(1972b) Elimination by Aspects (EBA) model, and the independent random utility model. The
MI, defined below, is simple, intuitively appealing, and testable.

Our main contribution, Theorem 3.1, shows how little the MI constrains binary choice proba-
bilities, revealing a complementarity between the MI and any axioms for binary choice probabilities
that one might wish to impose. The theorem implies that any system of binary choice probabilities
on a universe of objects can be extended to a complete system of choice probabilities satisfying the
MI. But is stronger than that. Consider a system of binary probabilities on one universe and the
extension of this to a system of binary probabilities on a larger universe containing the first. The
theorem implies that no matter how we extend the system of binary probabilities on the smaller
universe to a complete system of probabilities on that universe satisfying the MI, we can then
extend the system of binary probabilities on the larger universe to a complete system satisfying
the MI in such a way that the latter complete system is the extension of the former to the larger
universe. In this way, the extension result in Theorem 3.1 is more flexible than a recently published
result on the extension of binary choice probabilities satisfying the triangle inequality to systems
of probabilities satisfying regularity, another simple, intuitively appealing and testable condition
relating choice probabilities across choice sets of different sizes.

Another contribution is a series of illustrations, theorems and counterexamples shedding light
on the relationship between regularity and the MI. We illustrate graphically the complementarity
between them. For systems of binary and ternary choice probabilities, Theorem 2.1 establishes
a kind of compatibility between regularity and the MI, while Theorem 2.2 shows the equivalence
between the existence of an independent random utility representation of binary choice probabilities
and the condition that the set of extensions satisfying regularity is not included in the interior of
the set of extensions satisfying the MI. Theorem 3.3 shows that while the set of choice probabilities
satisfying regularity is convex, the set satisfying the MI is not. Theorem 3.4 shows that with
regularity maintained, many instances of the multiplicative inequality are redundant.

A final contribution is a cautionary observation, suggesting that there are choice environments
where the multiplicative inequality is implausible.

1.1 Preliminaries

Let T = {x1, . . . , xn} be a universe of choice objects. When faced with a non-empty choice set
A ⊆ T , an agent chooses a single object from A. The probability that the agent chooses x ∈ A is
denoted PA(x). A system of choice probabilities P on T is the complete specification of the PA(x),
x ∈ A ⊆ T . For distinct x, y ∈ T , we use the shorthand notation pxy to mean P{x,y}(x). A binary
system of choice probabilities p on T is the complete specification of pxy for all distinct x, y ∈ T .
We will abbreviate these two terms and speak of a system P or a binary system p. We define δT
as the set of binary systems on T and ∆T as the set of systems on T ; they are both Cartesian
products of simplices. For a given binary system p ∈ δT , we define ∆T (p) as the set of systems on
T that extend p; that is, the set of systems on T whose binary probabilities coincide with p.

In this paper, we will be particularly interested in the two following conditions and the re-
lationship between them. The system of choice probabilities P on the universe T satisfies the
multiplicative inequality if for all x ∈ A,B ⊆ T ,

PA∪B(x) ≥ PA(x)PB(x), (1)
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and regularity if for all x ∈ A ⊆ B ⊆ T ,

PA(x) ≥ PB(x); (2)

We will also be interested in the relationship between binary choice probabilities and multiple
choice probabilities implied by these axioms, and so the following definitions will be useful. For
a universe T , we define MT as the subset of ∆T where the multiplicative inequality holds and
RT as the subset where regularity holds. Just as ∆T (p), the set of systems extending the binary
system p, is defined as a cross section of ∆T , we can define the following cross sections of MT and
RT . For each p ∈ δT , let MT (p) = ∆T (p)

⋂
MT , the set of systems extending the binary system

p and satisfying the MI, and RT (p) = ∆T (p)
⋂
RT , the set of systems extending p and satisfying

regularity.

1.2 Conditions relating multiple choice probabilities

Here we describe some of the conditions that have been proposed to constrain choice probabilities
across choice sets of different sizes. Of particular importance here is the multiplicative inequality,
the subject of the paper, and regularity, whose connection with the MI is particularly important, but
we will also consider some well known alternative conditions in the literature. We will compare all
these conditions on the basis of interpretability, testability, empirical evidence, and any constraints
over binary choice probabilities that they imply. Conditions on choice probabilities mentioned in
the paper, other than regularity and the MI defined above, are defined in Appendix A.

Luce’s (1959) choice axiom relates choice probabilities across choice sets in a particularly re-
strictive way. When binary choice probabilities are non-degenerate, choice probabilities satisfy a
condition known as the constant ratio rule or Independence from Irrelevant Alternatives (IIA).
According to this rule, not only does a system of binary choice probabilities uniquely determine all
other choice probabilities, the binary choice probabilities themselves are tightly constrained: for all
distinct x, y, z ∈ T , pxzpzy = pxy must hold. The choice axiom has been criticized on both intu-
itive and empirical grounds. As much of the criticism also applies to the weaker simple scalability
condition, we refer to it below.

According to Krantz’s (1964) simple scalability condition, choice probabilities are functions only
of the feasible objects’ univariate and context free “scale” values, and these functions adhere to
certain intuitive monotonicity conditions. Tversky (1972b) shows that simple scalability is equiv-
alent to the order independence condition, which is expressed in terms of inequalities over choice
probabilities and thus directly testable. Tversky (1972b) points out that order independence can
be seen as a weaker, ordinal, version of the constant ratio rule, but it too has strong implications
for choice probabilities and has been criticized on empirical grounds. Tversky (1972a) summarizes
the theoretical problems with and empirical evidence against simple scalability. Rieskamp, Buse-
meyer, and Mellers (2006) show that simple scalability implies strong stochastic transitivity (SST)
of binary choice probabilities and reference some of the empirical evidence against SST.

Regularity, the condition that adding objects to a choice set cannot increase the probability of
choosing an object already in the choice set, is simple and intuitively appealing. Dasgupta and Pat-
tanaik (2007) make the case that “given its weakness, transparency, and intuitive appeal, regularity
recommends itself as the natural axiomatic foundation for the theory of choice behavior”. Regu-
larity has largely held up to empirical scrutiny, but the asymmetric dominance effect documented
by Huber, Payne, and Puto (1982) and others is inconsistent with it. Luce and Suppes (1965)
show that regularity implies the triangle inequality for binary choice probabilities and Sprumont
(2022) shows that any binary system satisfying the triangle inequality can be extended to a system
satisfying regularity.
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Falmagne (1978) showed that the set of Block-Marschak conditions (Block and Marschak (1960))
is equivalent to random utility. This makes it possible to test random utility, but while random
utility is easy to understand, the Block-Marschak conditions are neither simple nor intuitively
appealing in themselves. As regularity is a necessary condition for random utility—see Luce and
Suppes (1965)—random utility is also inconsistent with the asymmetric dominance effect and also
implies the triangle inequality for binary choice probabilities. McCausland and Marley (2014) and
McCausland, Davis-Stober, Marley, Park, and Brown (2020) describe direct tests of the complete set
of Block-Marschak conditions, and apply them to individual choice data, finding choice behaviour
consistent with these conditions for all but a few individuals.

Sattath and Tversky (1976) introduce the multiplicative inequality (MI) and claim “it has
some appeal as a principle of individual choice behaviour.” One interpretation of the MI is that
the probability of choosing x from A ∪ B is at least as great as the probability of choosing x
from A and again from B in independent trials. In the special case where a system P is induced
by a strict random preference �, PA(x), PB(x) and PA∪B(x) are the probabilities of the events
ΛA(x) ≡ {x � y : y ∈ A, y 6= x}, ΛB(x) ≡ {x � y : y ∈ B, y 6= x} and ΛA∪B(x) ≡ {x � y : y ∈
A ∪ B, y 6= x} = ΛA(x) ∩ ΛB(x). In this case, another interpretation of the MI is that it requires
that the events ΛA(x) and ΛB(x) be positively associated; equivalently, that learning that x is the
most preferred element of A increases the probability that it is also the most preferred element of
B. Colonius (1983) makes a related point about the MI when P is induced by random utility.

Sattath and Tversky (1976) also point out the following interesting complementarity between
regularity and the MI. Suppose both conditions hold for a universe T . Then for all A,B ⊆ T and
all x ∈ A ∩B,

min(PA(x), PB(x)) ≥ PA∪B(x) ≥ PA(x)PB(x). (3)

Regularity gives the upper bound for PA∪B(x), in terms of PA(x) and PB(x), and the MI gives the
lower bound.

The literature on MI is sparse compared with that on EBA. Corbin and Marley (1974) cast
some doubt on the MI with a plausible hypothetical description of a researcher considering three
candidates for a position. The researcher chooses whether the position is for a graduate student
or for a research assistant; both are equally likely. The universe of candidates is T = {x, y, z} and
they are ranked x � y � z in terms of their suitability as a graduate student and z � y � x as a
potential research assistant. This random preference induces choice probabilities that violate the
MI: PT (y) = 0 < 1

4 = pyxpyz. McCausland and Marley (2014) and McCausland, Davis-Stober,
Marley, Park, and Brown (2020) perform tests of the complete set of MI conditions, finding much
individual variation in evidence for or against the MI.

1.3 Models satisfying the multiplicative inequality

In a doubly seminal paper, Tversky (1972b) introduces both the similarity effect, and the Elim-
ination by Aspects (EBA) model. The similarity effect describes a pattern of stochastic choice
behaviour that is well documented but inconsistent with the constant ratio rule. Some versions
of the similarity effect (see Davis-Stober, Marley, McCausland, and Turner (2023) for details) are
inconsistent with simple scalability, a property of most discrete choice models. The Elimination
by Aspects (EBA) model describes choice as arising from a latent stochastic sequential process of
elimination. It does not imply simple scalability, and for suitable choices of the model’s parameters,
the resulting choice probabilities are consistent with the similarity effect.

The EBA model has other advantages. McFadden (1981) affirms that it “can accommodate
complex patterns of substitutability of alternatives” and suggests that it has “considerable potential
for econometric applications.” A result not unrelated to McFadden’s first comment is that EBA
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allows for choice probabilities that are ruled out by independent random utility; Tversky (1972a)
(page 346) provides an example of plausible choice probabilities that can be generated by EBA but
not by any independent random utility model.

Several testable implications of EBA have been identified. Tversky (1972a) shows that EBA
models satisfy regularity (Theorem 3 in that paper) and moderate stochastic transitivity (Theorem
4). Sattath and Tversky (1976) show that EBA models satisfy the MI. Tversky (1972a, Theorem
7) shows that EBA is a random utility model.

Sattath and Tversky (1976) also show that independent random utility models, where utilities
are statistically independent, imply the MI. That said, by far the most commonly used independent
random utility model is the multinomial logit model, which is already covered as a special case of
EBA.

1.4 Outline

In Section 2, we consider the important special case where the universe T has three elements. We
prove some new results on the multiplicative inequality and its relationship with regularity and
independent random utility, accompanied by graphical illustrations. In Section 3, we prove some
results for general T . In Section 4, we describe plausible random preferences where the MI is
violated. In Section 5, we conclude.

2 Results and illustrations for a universe with three elements

In this section, we consider the special case where |T | = 3. This is an important case as many so-
called context effects are framed as conditions relating choice probabilities on tripleton choice sets
and doubleton subsets. Davis-Stober, Marley, McCausland, and Turner (2023) survey the literature
on three context effects well known in the economics, marketing and mathematical psychology
literature, including the similarity and asymmetric dominance effects mentioned above and the
compromise effect introduced by Simonson (1989) and Tversky and Simonson (1993). Davis-Stober,
Marley, McCausland, and Turner (2023) present previously known and new results relating different
versions of these effects and various conditions on systems, including regularity, random utility, the
constant ratio rule and simple scalability, all mentioned above. The case |T | = 3 is also one where
graphics can be used to illustrate the cross sections RT (p) and MT (p) of the regularity and MI
regions. We begin by explaining a graphical device we use to illustrate choice probabilities on
tripleton sets and their doubleton subsets, as well as to illustrate the cross sections MT (p) and
RT (p) for various binary systems p.

2.1 Binary and ternary choice probabilities in a Barycentric coordinate system

Let T = {x, y, z}. We first describe a way of plotting all binary and ternary choice probabilities
associated with T as points in a single Barycentric coordinate system, as illustrated in Figure 1.
Each point on the equilateral triangle xyz, including the interior and the boundary, represents a
triple (PT (x), PT (y), PT (z)) of choice probabilities. The vertices x, y and z represent the probability
vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1), meaning the certain choice of objects x, y and z, respectively.
In general, the probability vector (PT (x), PT (y), PT (z)) is the convex combination of the vertices x,
y and z, with weights PT (x), PT (y) and PT (z). For example, the interior point a is the probability
vector (PT (x), PT (y), PT (z)) = (12 ,

3
10 ,

1
5). The fact that xyz is equilateral means that if we normal-

ize the height of the triangle to one, the distance of a point (PT (x), PT (y), PT (z)) to the right side
of the triangle is PT (x); to the base, PT (y); and to the left side, PT (z).
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Figure 1: Binary and ternary probabilities on a universe T = {x, y, z} in a Barycentric coordinate
system. Points a, b, c and d specify a system on T satisfying both regularity and the MI; b, c and d
alone specify a binary system on T . Solid triangle bde gives the set of ternary probabilities (which
includes a) extending the binary system to a system satisfying regularity. Solid triangel fgh gives
the set of ternary probabilities (which also includes a) extending the binary system to a system
satifying the MI.
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We also represent the binary probabilities pxy, pyz and pxz as points on the left, right and
bottom sides of the triangle, respectively. We use hollow dots for binary probabilities and solid
dots for ternary probabilities, to avoid ambiguity for points on the sides of the triangle. A point
on the left side of the triangle is the convex combination of the vertices x and y, with weights pxy
and pyx respectively; similarly, a point on the right side is the convex combination of y and z with
weights pyz and pzy, and a point on the base is the convex combination of z and x with weights
pzx and pxz. In Figure 1, the points b, c and d represent the binary probabilities pxy = 2

3 , pyz = 2
3

and pzx = 1
3 .

2.2 Regularity and the MI

For a fixed binary system p on T = {x, y, z}, we now consider the cross sections R(p) and M(p),
the sets of extensions of p to systems satisfying regularity and the MI, respectively. By definition,

RT (p) ≡ {P ∈ ∆T (p) : PT (x) ≤ min(pxy, pxz), PT (y) ≤ min(pyx, pyz), PT (z) ≤ min(pzx, pzy)} (4)

and
MT (p) ≡ {P ∈ ∆T (p) : PT (x) ≥ pxypxz, PT (y) ≥ pyxpyz, PT (z) ≥ pzxpzy}. (5)

Take as an example the binary system p given by the points b, c and d; that is, where
pxy = 2

3 , pyz = 2
3 and pzx = 1

3 . This binary system is extended to a system on T by specfy-
ing the ternary choice probability vector (PT (x), PT (y), PT (z)). The extension satisfies the MI if
and only if (PT (x), PT (y), PT (z)) ≥ (49 ,

2
9 ,

1
9); the region of compatible ternary choice probabili-

ties is the equilateral triangle fgh in Figure 1. The extension satisfies regularity if and only if
(PT (x), PT (y), PT (z)) ≤ (23 ,

1
3 ,

1
3); here the region is the equilateral triangle bde. It is clear from

equations (4) and (5) that if they exist, the set of ternary choice probabilities extending any binary
system on T to a system satisfying the MI will always be an equilateral triangle pointing up and the
set of ternary choice probabilities extending a binary system on T to a system satisfying regularity
will always be an equilateral triangle pointing down, with the convention that a single point is a
special case of both.

Clearly, regularity and the MI are logically independent. For the binary system p given above,
defined by pxy = 2

3 , pyz = 2
3 and pzx = 1

3 , it is easy to check directly that the extension of p with
(PT (x), PT (y), PT (z)) = (13 ,

1
3 ,

1
3) (point e) satisfies regularity and not the multiplicative inequality.

The extension with (PT (x), PT (y), PT (z)) = (49 ,
4
9 ,

1
9) (point g) satisfies the multiplicative inequality

and not regularity. The extension with (PT (x), PT (y), PT (z)) = (0, 0, 1) (point z) satisfies neither
and the extension with (12 ,

3
10 ,

1
5) (point a) satisfies both.

As an aside, the MI is in fact logically independent of many well-known axioms of discrete
probabilistic choice. Section 2.2 of McCausland and Marley (2013) gives a complete description,
with a diagram, of the logical relationships among the following conditions: weak, moderate and
strong stochastic transitivity; the triangle inequality; regularity; the Block-Marschak conditions;
and the MI. See Appendix A for definitions of conditions that do not appear in the main text.
Not only is the MI logically independent of each of the other conditions in this list, any logically
possible combination of the other conditions being satisfied or not is compatible both with the MI
being satisfied and with it not being satisfied.

For some choices of pxy, pyz and pzx, R(p) is empty. For example, if pxy = pyz = pzx = 1
4 ,

regularity requires PT (x) ≤ 1
4 , PT (y) ≤ 1

4 and PT (z) ≤ 1
4 , which is impossible. Sprumont (2022)

shows for general T that R(p) is non-empty if and only if binary system p satisfies the triangle
inequality; for T = {x, y, z} under discussion here, this condition can be summarized as 1 ≤
pxy + pyz + pzx ≤ 2.
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In contrast, while M(p) can be a single point, it is never empty. This, too, is true for general
T , by Corollary 3.2 below, but it will be instructive to show this for T = {x, y, z} using a simpler
approach. Consider the equation

1 = (pxy + pyx)(pxz + pzx)(pyz + pzy)

= pxypxz + pyxpyz + pzxpzy + pxypyzpzx + pxzpzypyx.

The first three terms on the second line give the lower bounds on PT (x), PT (y) and PT (z), re-
spectively, implied by the MI. The remainder S(p) ≡ pxypyzpzx + pxzpzypyx clearly must satisfy
0 ≤ S(p) ≤ 1. S(p) measures the total amount of slack in the three multiplicative inequalities
PT (x) ≥ pxypxz, PT (y) ≥ pyxpyz and PT (z) ≥ pzxpzy, and so the height of the equilateral triangle
of ternary probabilities consistent with the MI for given p is a fraction S(p) of the height of the
triangle xyz.

Clearly, S(p) = 0 if and only if there is at least one object that is either always chosen or never
chosen in pairwise comparisons with the other two objects. In this case, the ternary probability
of such an object is constrained to be one or zero, respectively, and the set of ternary probability
vectors consistent with the MI and given p is the single point (pxypxz, pyzpyx, pzxpzy). Also, S(p) = 1
if and only if there is a deterministic intransitive cycle in one direction (pxy = pyz = pzx = 1) or
the other (pxy = pyz = pzx = 0), in which case the ternary probability vector is completely
unconstrained by the MI.

Figure 2 shows ten binary-ternary plots, each for a different binary system p. Each figure shows
the set of ternary probability vectors PT (·) extending p to a system in MT (p) and the set of ternary
probability vectors extending p to a system in RT (p). Panels (a), (b) and (c) show the cases
pxy = pyz = pzx = 0.9, pxy = pyz = pzx = 0.65 and pxy = pyz = pzx = 0.5, respectively. In (a),
weak stochastic transitivity (WST) is violated and RT (p) is empty. In (b), WST is violated but
RT (p) is not empty. In (c), the binary choice probabilities are on the boundary of the WST region;
relative to (b), M(p) changes little but R(p) is much larger. In panels (d) and (e), the stochastically
intransitive cycles in (b) and (a), respectively, are broken by replacing pzx with its complementary
probability; the regularity and MI cross sections change considerably. Binary probabilities in (g)
show x and y usually chosen over z in pairwise comparison and a kind of indifference between x and
y; those in (h) show x usually chosen over y and z in pairwise comparison and a kind of indifference
between y and z. Binary probabilities in (i) show x usually chosen over y but indifference between x
and z and between y and z; this pattern is more unexpected, and like the cases with stochastically
intransitive cycles, M(p) is particularly large relative to R(p). Panel (j) illustrates a tendency for
both RT (p) and MT (p) to grow larger when binary choice probabilities become more moderate.

We have seen in equation (3) a kind of complementary between regularity and the MI. However,
adding-up constraints mean that they are, in one sense, similar. The upper bounds on PT (x), PT (y)
and PT (z) given by regularity, together with the condition that PT (x) + PT (y) + PT (z) = 1, imply
lower bounds as well: PT (x) ≥ 1−min(pyz, pyx)−min(pzx, pzy) and similar expressions for PT (y)
and PT (z). These lower bounds are often similar to the lower bounds given by the MI. Likewise, the
lower bounds on PT (x), PT (y) and PT (z) given by the MI, together with PT (x)+PT (y)+PT (z) = 1,
imply upper bounds, which are often close to the upper bounds given by regularity. For many binary
systems p, the M(p) and R(p) regions are in similar positions and have similar sizes, especially for
more plausible binary systems, making empirical discrimination between regularity and MI difficult.
Looking at all ten panels, we see that for the binary system p of each panel, M(p) and R(p) intersect
whenever R(p) is not empty. Although panel (e) shows that it is possible for M(p) and R(p) to be
nearly disjoint, in fact they intersect for all p ∈ δT , |T | = 3, as the following theorem implies.

Theorem 2.1 For all p ∈ δT , |T | = 3, R(p) 6= ∅ ⇒ R(p) ∩M(p) 6= ∅.
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Figure 2: A Gallery of binary choice probabilities and regions where the ternary probabilities
satisfy regularity (downward pointing blue triangle and its interior) and the multiplicative inequality
(upward pointing red triangle and its interior).

Proof Let T = {x, y, z} and let p ∈ δT be arbitrary. Let a = pxypxz + pyzpyx + pzxpzy and
b = min(pxy, pxz) + min(pyz, pyx) + min(pzx, pzy). Since a = 1−S(p), 0 ≤ a ≤ 1. Now suppose that
R(p) 6= ∅, which implies b ≥ 1. Together, we have a ≤ 1 ≤ b.

Consider first the case a = b. Then since pxypxz ≤ min(pxy, pxz), pyzpyx ≤ min(pyz, pyx)
and pzxpzy ≤ min(pzx, pzy), it must be that pxypxz = min(pxy, pxz), pyzpyx = min(pyz, pyx) and
pzxpzy = min(pzx, pzy). Now let PT (x) = pxypxz, PT (y) = pyzpyx and PT (z) = pzxpzy. Regularity
and the MI are both satisfied with equality and PT (x) + PT (y) + PT (z) = a = b = 1.

Now consider the case a < b. Let

α ≡ b− 1

b− a
.

Since a ≤ 1 ≤ b, 0 ≤ α ≤ 1. Now construct

PT (x) = αpxypxz + (1− α) min(pxy, pxz),

PT (y) = αpyzpyx + (1− α) min(pyz, pyx),

PT (z) = αpzxpzy + (1− α) min(pzx, pzy).

Since 0 ≤ α ≤ 1, PT (x), PT (y) and PT (z) are all non-negative. Also

PT (x) + PT (y) + PT (z) = αa+ (1− α)b = 1.

Since each of PT (x), PT (y) and PT (z) is a convex combination of the lower bound imposed by the
MI and the upper bound imposed by regularity, P ∈ R(p) ∩M(p). �

We do not know whether Theorem 2.1 extends to |T | > 3. In Section 5, we discuss the prospects
of a constructive proof along the lines of the proof of Theorem 3.1, and identify some difficulties
standing in the way.

We notice that M(p) tends to be large when the the binary probabilities are far from satisfying
the triangle inequality, a condition that is necessary for regularity and described by Fishburn
(1999) as one of many kinds of stochastic transitivity. We can make this observation more precise by
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considering the minimization and maximization of S(p) with respect to the vector p̄ = (pxy, pyz, pzx).
The gradient and Hessian of S(p) with respect to p̄ are

dS(p)

dp̄
=

0 1 1
1 0 1
1 1 0

pxypyz
pzx

−
1

1
1

 , d2S

dp̄dp̄>
=

0 1 1
1 0 1
1 1 0

 .
The function S(p) has a unique critical point at pxy = pyz = pzx = 1

2 and the eigenvalues of
the Hessian are -1, -1 and 2 everywhere. Thus, the critical point is a saddle point, and so S(p)
cannot have local minima or maxima in the interior of [0, 1]3. Consider now the minimization and
maximization of S(p) as a function of pxy for fixed pyz and pzx. First note that

pyzpzx > pxzpzy ⇔ pyz + pzx > 1⇔ pxz + pzy < 1.

If pyzpzx > pxzpzy, S(p) is minimized at pxy = 0, where the triangle inequality holds (pxy + pyz ≥
pxz and pxz + pzy ≥ pxy) and maximized at pxy = 1, where the triangle inequality is violated
(pxz + pzy < pxy). Similarly, if pyzpzx < pxzpzy, S(p) is minimized at pxy = 1, where the triangle
inequality holds, and maximized at pxy = 0, where the triangle inequality is violated. In both cases,
S(p) monotonically increases as pxy goes from the value where the triangle inequality is satisfied
with the most slack to the value where it is violated with the most slack.

We see that much of the volume of MT features unrealistic choice probabilities, in the form of
violations of the triangle inequality or regularity. This observation is also supported by an analysis
in McCausland and Marley (2013) showing that for a wide range of prior distribution over ∆T (for
|T | = 3, 4, 5), the prior probability of the MI is much greater than the probability of regularity.
This has implications for Bayesian inference and particularly the interpretation of Bayes factors in
favour of systems restricted to the MI region versus systems that are not. Bayes factors will favour
an unconstrained encompassing model over a restriction of that model to MT , relative to what one
might expect if unaware of the large prior probability of unrealistic systems satisfying the MI. One
recommendation that emerges is that rather than testing the MI against a completely unconstrained
model, one should test the MI jointly in conjunction with other stochastic choice axioms, or test the
MI within an encompassing model constrained by some maintained axioms. In both cases, these
axioms should be ones that rule out the most unrealistic parts of MT . Results and observations
in this paper suggest some suitable candidates: regularity and various axioms for binary choice
probabilities. We have seen ways in which regularity and the MI are complementary and Theorem
2.1 shows some compatability between them. Theorem 3.1 below implies that any binary system
can be extended to a system satisfying the MI, revealing a strong type of compatibility between
the MI and any axiom for binary choice probabilities.

2.3 The multiplicative inequality and independent random utility

Suck (2002) considers the question of which binary systems admit an independent random utility
representation. For a universe T of arbitrary size, his Theorem 2 gives a necessary condition: for
all distinct x, y, z ∈ T , min(pxy + pyzpzx, pyz + pzxpxy, pzx + pxypyz) ≤ 1. For |T | = 3, the condition
is also sufficient, and his proof of this is constructive.

The following theorem establishes a simple geometric interpretation for Suck’s (2002) necessary
and sufficient conditions for the case |T | = 3:

Theorem 2.2 For all p ∈ δT , |T | = 3, p admits an independent random utility representation if
and only if R(p) 6⊆ interior(M(p)).
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The result is mildly paradoxical: regularity and the MI are both necessary conditions for an inde-
pendent random utility representation, but if all the regular extensions of a binary system satisfy
the MI with strict inequalities, there cannot be such a representation. In Figure 2, panels (a) and
(b) show binary systems inconsistent with independent random utility. Only in panel (b), where
R(p) is non-empty, are there completions of the binary system p satisfying random utility but none
satisfying independent random utility.

Proof Let T = {x, y, z} and p ∈ δT be arbitrary. First consider the case RT (p) = ∅. Since
regularity is a necessary condition for a random utility representation, p does not admit a random
utility representation, let alone an independent random utility representation. At the same time
R(p) = ∅ ⊆ interior(M(p)) trivially.

Now consider the case RT (p) 6= ∅. Then the maximum allowable values of PT (x), PT (y) and
PT (z) must have a sum greater than or equal to one. That is,

min(pxy, pxz) + min(pyx, pyz) + min(pzx, pzy) ≥ 1. (6)

Now consider the following three conditions.

1. All of the following hold:

(a) pxy + pyzpzx > 1 (equivalent to pxy − pxz > pzxpzy),

(b) pyz + pzxpxy > 1 (equivalent to pyz − pyx > pxypxz),

(c) pzx + pxypyz > 1 (equivalent to pzx − pzy > pyzpyx).

2. All of the following hold:

(a) pyx + pxzpzy > 1 (equivalent to pyx − pyz > pzxpzy),

(b) pxz + pzypyx > 1 (equivalent to pxz − pxy > pyzpyx),

(c) pzy + pyxpxz > 1 (equivalent to pzy − pzx > pxypxz).

3. All of the following hold:

(a) 1−min(pxy, pxz)−min(pyx, pyz) > pzxpzy,

(b) 1−min(pyx, pyz)−min(pzx, pzy) > pxypxz,

(c) 1−min(pxy, pxz)−min(pzx, pzy) > pyxpyz.

By corollary 4 in Suck (2002), p does not admit an independent random utility representation
if and only if either of conditions 1 or 2 hold. The equivalence of the conditions in parentheses is
easy to verify and they are quite useful in the proof.

We now show that for RT (p) 6= ∅, RT (p) ⊆ interior(MT (p)) is equivalent to condition 3 above.
The set of ternary probability vectors (PT (x), PT (y), PT (z)) extending p to a system consistent
with regularity—see (4)—is an equilateral triangle, the set of convex combinations of the vertices

(min(pxy, pxz),min(pyx, pyz), 1−min(pxy, pxz)−min(pyx, pyz)),

(1−min(pyx, pyz)−min(pzx, pzy),min(pyx, pyz),min(pzx, pzy)),

and
(min(pxy, pxz), 1−min(pxy, pxz)−min(pzx, pzy),min(pzx, pzy)).

11



Suppose RT (p) ⊆ interior(MT (p)). Then all of these vertices must strictly dominate the vector
(pxypzy, pyxpyz, pzxpzy), which gives condition 3.

Now suppose that Condition 3 holds. Together with equation (6), condition 3 implies min(pxy, pxz) >
pxypxz, min(pyx, pyz) > pyxpyz, min(pzx, pzy) > pzxpzy and that each of the vertices above extends p
to a system consistent with the MI. Since the set of ternary probability vectors (PT (x), PT (y), PT (z))
extending p to a system consistent with regularity is the set of convex combinations of these ver-
tices, and since the set of ternary probability vectors (PT (x), PT (y), PT (z)) extending p to a system
consistent with the MI is convex, RT (p) ⊆ interior(MT (p)).

We now show that condition 3 holds if and only if either condition 1 or condition 2 holds. (Note
in passing that at most one of conditions 1 and 2 can hold; this is most obvious looking at the
conditions in parentheses.) Suppose that condition 1 holds. Using the versions of the conditions
1a, 1b and 1c in parentheses, first to establish which argument of each min(·, ·) function is minimal
and then again in the final inequality, we obtain

1−min(pxy, pxz)−min(pyx, pyz) = 1− pxz − pyx = pxy − pxz > pzxpzy,

1−min(pyx, pyz)−min(pzx, pzy) = 1− pyx − pzy = pyz − pyx > pxypxz,

1−min(pxy, pxz)−min(pzx, pzy) = 1− pzy − pxz = pzx − pzy > pyzpyx.

This establishes condition 3. The proof that condition 2 implies condition 3 is very similar.
We now complete the proof by showing that condition 3 implies that either of conditions 1 and 2

hold; we have already seen that they cannot both hold. Suppose that condition 3 holds and consider
first the condition 3a. We can rule out the case where min(pxy, pxz) = pxy and min(pyx, pyz) = pyx
because this makes the left hand side of 3a equal to 0, which cannot be greater than the right hand
side. We can also rule out the case where min(pxy, pxz) = pxz and min(pyx, pyz) = pyz, as this
makes the left hand side of 3a equal to 1− pxz − pyz and

1− pxz − pyz ≤ (1− pxz − pyz + pxzpyz) = pzxpzy,

a direct contradiction of 3a. This leaves two possibilities:

min(pxy, pxz) = pxz and min(pyx, pyz) = pyx, (7)

or
min(pxy, pxz) = pxy and min(pyx, pyz) = pyz. (8)

Equations (7) and (8) imply conditions 1 and 2, respectively. We now show that equation (7)
implies condition 1; by symmetry, (8) implies condition 2. If (7) holds, then condition 3a gives

1− pxz − pyx = pxy − pxz > pzxpzy,

which is condition 1a.
We can rule out two cases for 3b as well. Of the remaining two, only the case where min(pyz, pyx) =

pyx and min(pzy, pzx) = pzy is consistent with (7). Thus

1−min(pyz, pyx)−min(pzy, pzx) = 1− pyx − pzy = pyz − pyx > pxypxz,

which is condition 1b.
Finally, condition 3c gives

1−min(pzx, pzy)−min(pxz, pxy) = 1− pzy − pxz = pzx − pzy > pyxpyz,

which is condition 1c. �

We do not know if Theorem 2.2 extends in some way to |T | > 3. One difficulty in trying
to extend it is that the sufficiency of Suck’s (2002) condition for an independent random utility
representation is established only for |T | = 3.
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3 Theorems for general universes

3.1 Extensions of binary systems to systems satisfying the MI

We will use the following theorem to show, constructively, that for any binary system p on a universe
T , there is a system P ∈MT (p); that is, a system on T extending p that satisfies the MI. However,
the theorem is stronger than that: no matter how we choose P ∈ MT (p), and no matter how we
extend p to a binary system p′ on a larger universe T ′ containing T , we can extend p′ to a system
P ′ ∈ MT ′(p′) in such a way that P ′ is an extension of P to T ′. The theorem reveals a kind of
complementarity between the MI and axioms for binary choice probabilities.

Theorem 3.1 Let T and T ′ = T ∪ {y}, with y /∈ T , be universes of choice objects. Let binary
systems p ∈ δT and p′ ∈ δT ′ be such that p′ is an extension of p to T ′. Let P be a system on T .
Then if P ∈MT (p), there exists a system P ′ ∈MT ′(p′) that extends P to T ′.

Proof Suppose that P ∈MT (p). For the given p′, take any function gy : 2T → R with the following
properties:

1. For all A ⊆ T , 0 ≤ gy(A) ≤ 1.

2. gy(∅) = 1 and for all x ∈ T , gy({x}) = p′yx.

3. For all A,B ⊆ T , gy(A)gy(B) ≤ gy(A ∪B) ≤ min(gy(A), gy(B)).

We can always take gy(A) =
∏

x∈A pyx or gy(A) = minx∈A pyx, with the convention that gy(∅) = 1,
both of which satisfy these properties.

We now extend P to a system P ′ on T ′ in the following way: for all A ⊆ T , let P ′A∪{y}(y) ≡ gy(A)

and for all x ∈ A, let P ′A∪{y}(x) ≡ (1 − gy(A))PA(x). Since P ∈ δT (p) and P ′{x,y}(y) = p′yx for all

x ∈ T , P ′ ∈ δT ′(p′). We will call gy(·) the extension function for the incremental element y.
Now let A,B ⊆ T ′. If y /∈ A ∪ B, P ′A∪B(x) ≥ P ′A(x)P ′B(x) by the assumption P ∈ MT (p) and

the fact that P ′ is an extension of P . If y ∈ A ∩B, then

P ′A∪B(y) = gy(A ∪B − {y}) ≥ gy(A− {y})gy(B − {y}) = P ′A(y)P ′B(y),

and for x ∈ A ∩B, x 6= y,

P ′A∪B(x) = (1− gy(A ∪B − {y}))PA∪B−{y}(x)

≥ (1− gy(A ∪B − {y}))PA−{y}(x)PB−{y}(x)

≥ (1− gy(A ∪B − {y}))(1− gy(A ∪B − {y}))PA−{y}(x)PB−{y}(x)

≥ (1− gy(A− {y}))(1− gy(B − {y}))PA−{y}(x)PB−{y}(x)

= P ′A(x)P ′B(x).

The equalities come from the definition of the extension P ′. The first inequality is by the MI for P
on T . The second and third inequalities are from properties 1 and 3 of gy(·). It may appear that the
condition gy(A∪B) ≥ min(gy(A), gy(B)) could be relaxed to 1−gy(A∪B) ≥ (1−gy(A))(1−gy(B),
but that will not do for the remaining case.

Without loss of generality—we can switch A and B—the remaining case has y ∈ A and y /∈ B,
where for all x ∈ A ∩B,

P ′A∪B(x) = (1− gy(A ∪B − {y}))PA∪B−{y}(x)

≥ (1− gy(A ∪B − {y}))PA−{y}(x)PB(x)

≥ (1− gy(A− {y}))PA−{y}(x)PB(x)

= P ′A(x)P ′B(x).�

13



Corollary 3.2 Let T be a universe of choice objects and let p ∈ δT be a binary system on T . Then
there exists a system P ∈MT (p).

Proof We prove this by induction. Let p be a binary system on a universe T and let n = |T |.
Let � be any linear order on T and construct the sequence T1 ⊂ T2 ⊂ · · · ⊂ Tn = T , where each
Ti is the set of the i lowest �-ranked objects in T . We now show that there exists a sequence
P (1), . . . , P (n) of systems such that for i = 1, . . . , n, P (i) ∈MTi(p

(i)), where p(i) is the restriction of
p to Ti. There is exactly one system P (1) on T1, and P (1) ∈MT1(pi) trivially. Theorem 3.1 provides
the inductive step. The existence of P (n) ∈MTn(p(n)) = MT (p) is the result we seek to prove.

We can interpret the final P ∈ MT (p) as giving, for each x ∈ A ⊆ T , the probability PA(x)
of contestant x winning the following |A|-round sequential contest against the other contestants in
A. The players in A are lined up in ascending �-order. In the first round, the first contestant is
declared the provisional winner. The other players then take turns to try to supplant the current
provisional winner to become the new provisional winner. On the turn of each contestant x, x
becomes the provisional winner with probability mA(x) ≡ gx({w ∈ A : x � w}). The (definitive)
winner of the sequential contest is the provisional winner after the last contestant’s turn. The
probability that x is the winner is the probability that x becomes the provisional winner and that
all higher �-ranked contestants in A fail to do so: thus

PA(x) = mA(x)
∏

w∈A,x�w
(1−mA(w)).

For the special case

mA(x) ≡
∏

w∈A, x�w
pxw,

we can think of mA(x) as the probability that x defeats all �-lower ranked opponents in A in
statistically independent matches, where the probability of defeating any one such opponent w is
pxw. For the special case

mA(x) ≡ min
w∈A, x�w

pxw,

x only has to defeat their most fearsome lower �-ranked opponent in A.
To clarify the connection between the contest and Theorem 3.1, we show directly that the

system of probabilities induced by the contest satisfy the MI. The following properties of mA(x)
are easy to check: 0 ≤ mA(x) ≤ 1 and for all A,B ⊆ T and x ∈ A ∩B,

mA(x)mB(x) ≤ mA∪B(x) ≤ min(mA(x),mB(x)).

Now for all A,B ⊆ T and x ∈ A ∩B,

PA(x)PB(x) = mA(x)mB(x)
∏

y∈A, y�x
(1−mA(y))

∏
y∈B, y�x

(1−mB(y))

≤ mA∪B(x)
∏

y∈A, y�x
(1−mA(y))

∏
y∈B, y�x

(1−mB(y))

≤ mA∪B(x)
∏

y∈A, y�x
(1−mA∪B(y))

∏
y∈B, y�x

(1−mA∪B(y))

≤ mA∪B(x)
∏

y∈A∪B, y�x
(1−mA∪B(y)) = PA∪B(x).�
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One might conjecture that, for a given T and p ∈ δT , every P ∈ MT (p) can be obtained using
a sequential construction of the kind described in the proof of Corollary 3.2. The conjecture, more
precisely, is the following. Suppose that T , p ∈ δT and P ∈ MT (p) are given. Then there is linear
order � on T and, for each i = 2, . . . , n− 1, an extension function gxi+1 : 2Ti → R, where xi is the
i’th lowest �-ranked object in T and Ti = {x1, . . . , xi}, such that

1. gxi+1 : 2Ti → R satifies conditions 1, 2 and 3 in the proof of Theorem 3.1, and

2. if we take the restriction of P to Ti and use the extension function gxi+1 : 2Ti → R to extend
it to P ′ as described in the proof of Theorem 3.1, then P ′ is the restriction of P to Ti+1.

However, the conjecture is false, even if we modify it to require |T | = 3. To provide counterex-
amples and illustrate the issues, consider the choice universe T ≡ {x, y, z} and the binary system
p on T defined by pxy = 0.4, pyz = 0.7 and pxz = 0.2. Figure 3 and Table 1 help illustrate which
P ∈MT (p) can be constructed using Theorem 3.1 and which cannot. Each row of Table 1 provides
a different ternary choice probability vector PT (·) extending p to a system P ∈ MT (p); each row
corresponds to a different combination of highest �-ranked object (last contestant) and extension
function (giving its victory probability). Columns three through five specify PT (·), both symboli-
cally and numerically. Column one gives the name of the point in Figure 3 that represents PT (·)
in Barycentric coordinates. Column two gives two interchangeable linear orders � that share the
same highest ranked object and induce the same PT (·) for a given extension function. Note that
xyz, for example, represents the linear order x ≺ y ≺ z; this notation reflects the order of sequential
construction (the order of contestants) and is the reverse of the notation that is customary when �
represents a preference. The vectors PT (·) in the first three rows are constructed using the exten-
sion functions with gz({x, y}) = pzxpzy, gy({x, z}) = pyxpyz and gx({y, z}) = pxypxz, minimizing
PT (z), PT (y) and PT (x), respectively, over the extension functions satisfying condition 3 in Theo-
rem 3.1. The vectors PT (·) in rows four through six are constructed using the extension functions
with gz({x, y}) = min(pzx, pzy), gy({x, z}) = min(pyx, pyz) and gx({y, z}) = min(pxy, pxz). These
maximize the same probabilities.

Figure 3 represents, in Barycentric coordinates, the binary choice probabilities pxy = 0.4, pyz =
0.7 and pxz = 0.2 and the six ternary choice probability vectors (points a, a′, b, b′, c, and c′) of
Table 1. The solid equilateral triangle in the interior of triangle xyz—points a, a′, b, b′, c, and c′

all lie on its boundary—is the set of ternary probability vectors PT (·) that extend p to a system
satisfying the MI. We see, for example, that points a and a′ minimize and maximize, respectively,
the probability PT (z) among the extensions based on the orders x ≺ y ≺ z and y ≺ x ≺ z where
object z is highest ranked and therefore introduced last; for these extensions, the constant ratio
PT (x)/PT (y) = pxy/pyx applies and the ternary probability PT (·) always lies on the ray from z
through a and a′. Points a and a′ both lie on the boundary of the MI region, showing that the
bounds on the function gz({x, y}) in condition 3 of Theorem 3.1 are sharp.

At the same time, however, the set of ternary probability vectors that are constructions de-
scribed by Theorem 3.1, represented by the union of the line segments aa′, bb′ and cc′, extend p
to a small subset of MT (p). Even the convex hull of these points, representing mixtures of those
choice distributions, corresponds to a strict subset of MT (p).

The importance of Theorem 3.1 goes beyond establishing the existence of extensions of binary
systems to systems satisfying the MI and doing so constructively. It also shows that the sequential
construction of systems satisfying the MI as new choice objects are introduced never leads to a
dead end. The system P ∈MT (p) in the preamble of the theorem is arbitrary. It is not necessarily
one that can be constructed only using repeated applications of the theorem, and we can choose it
without regard to the binary choice probabilities p′xy, x ∈ T , extending p to p′ on T ′ ≡ T ∪ {y}.
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Point � PT (x) PT (y) PT (z)

a xyz/yxz pxy(1− pzxpzy) = 0.304 pyx(1− pzxpzy) = 0.456 pzxpzy = 0.24
b xzy/zxy pxz(1− pyxpyz) = 0.116 pyxpyz = 0.42 pzx(1− pyxpyz) = 0.464
c yzx/zyx pxypxz = 0.08 pyz(1− pxypxz) = 0.644 pzy(1− pxypxz) = 0.276

a′ xyz/yxz pxy(1− pzx ∧ pzy) = 0.28 pyx(1− pzx ∧ pzy) = 0.42 pzx ∧ pzy = 0.3
b′ xzy/zxy pxz(1− pyx ∧ pyz) = 0.08 pyx ∧ pyz = 0.6 pzx(1− pyx ∧ pyz) = 0.32
c′ yzx/zyx pxy ∧ pxz = 0.2 pyz(1− pxy ∧ pxz) = 0.56 pzy(1− pxy ∧ pxz) = 0.24

Table 1: Ternary choice probability vectors PT (·) completing the binary system p defined by pxy =
0.4, pyz = 0.7 and pxz = 0.2. Each row is a different extension of p to a system satisfying the MI.
We use the notation ∧ for the binary minimum operator.

x

y

z

pxy = 0.4

pyz = 0.7

pxz = 0.2

a

b

c

a'

b'
c'

Figure 3: Ternary choice probability vectors extending the binary system p defined by pxy = 0.4,
pyz = 0.7 and pxz = 0.2 to a system satisfying the MI. Each of the points a, a′, b, b′, c and c′

corresponds to a row of Figure 3 and extends p to a system satisfying the MI. The equilateral
triangle on whose boundary the six points fall is the set of ternary probability vectors extending p
to a system satisfying the MI.
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This flexibility of sequential extensions is a strong and important property of the MI. To illus-
trate this, we will show that regularity does not have the analogous property. Recall Sprumont’s
(2022) result that any binary system satisfying the triangle inequality can be extended to a system
satisfying regularity. For regular extensions to have the same kind of flexibility that extensions
satisfying the MI have, the following conjecture would have to be true. Let T and T ′ = T ∪ {w},
with w /∈ T , be universes of choice objects. Then for all p ∈ δT satisfying the triangle inequality on
T , all p′ ∈ δT ′ extending p to T ′ and satisfying the triangle inequality on T ′, and all P ∈ RT (p),
there exists a P ′ ∈ RT ′(p′) extending P to T ′.

However, the conjecture is false, as the following counterexample shows. Let T ≡ {x, y, z} and
T ′ ≡ {w, x, y, z}, define p on T by setting pyx = pyz = pzx = 1

2 , and extend p to p′ on T ′ by setting
p′wx = p′yw = p′zw = 1

4 . It is easy to check that p′, and therefore p, satisfy the triangle inequality, but
note that the particular inequalities p′yw +p′wx ≥ pyx and p′zw +p′wx ≥ pzx hold with equality, which
implies that there is only one ternary probability vector consistent with both p′ and regularity on
each of the choice sets {w, x, y} and {w, x, z}, respectively; these are

(P ′{w,x,y}(w), P ′{w,x,y}(x), P ′{w,x,y}(y)) = (14 ,
1
2 ,

1
4) (9)

and
(P ′{w,x,z}(w), P ′{w,x,z}(x), P ′{w,x,z}(z)) = (14 ,

1
2 ,

1
4). (10)

This means that any extension of p′ to a regular system P ′ on T ′ must satisfy (9), (10), and
therefore

P ′{w,x,y,z}(w) ≤ 1
4 , P ′{w,x,y,z}(y) ≤ 1

4 , P ′{w,x,y,z}(z) ≤
1
4 . (11)

Now consider the extension of p to a regular system P . One such extension is obtained by setting
(P{x,y,z}(x), P{x,y,z}(y), P{x,y,z}(z)) = (15 ,

2
5 ,

2
5). A regular extension of this system to T ′ would

require P ′{w,x,y,z}(x) ≤ 1
5 , which is inconsistent with (11) and the adding-up constraint. Therefore

there is no such extension. Even though choosing (P{x,y,z}(x), P{x,y,z}(y), P{x,y,z}(z)) = (15 ,
2
5 ,

2
5)

gives a regular system on T , it is a dead end.
Of course, there must be some choice of P{x,y,z}(·) such that we can extend P to a regular system

P ′ on T ′ that is also an extension of p′. One such choice is (P{x,y,z}(x), P{x,y,z}(y), P{x,y,z}(z)) =

(12 ,
1
4 ,

1
4) and one of the extensions of this to T ′ is defined by (9), (10),

(P ′{w,y,z}(w), P ′{w,y,z}(y), P ′{w,y,z}(z)) = (35 ,
1
5 ,

1
5),

and
(P ′{w,x,y,z}(w), P ′{w,x,y,z}(x), P ′{w,x,y,z}(y), P ′{w,x,y,z}(z)) = (15 ,

2
5 ,

1
5 ,

1
5).

3.2 Non-convexity of the MI region

We have seen that for any given binary system p on T = {x, y, z}, the cross sections MT (p) and
RT (p) are convex. It is also easy to see that for all T , RT is convex: ∆T is convex and RT is the
intersection of ∆T and a collection of half-spaces. It might therefore be tempting to conjecture that
M is also convex. However, it is not, for |T | ≥ 3.

Theorem 3.3 For all universes T such that |T | ≥ 3, MT is not convex.

Proof First take T = {x, y, z}. The following two systems satisfy the MI:

pxy = pyz = pzx = 1, P{x,y,z}(x) = 1, P{x,y,z}(y) = 0, P{x,y,z}(z) = 0,

17



and
pxy = pyz = pzx = 0, P{x,y,z}(x) = 1, P{x,y,z}(y) = 0, P{x,y,z}(z) = 0.

The convex combination of the two, with equal weights, is the system

pxy = pyz = pzx = 1
2 , P{x,y,z}(x) = 1, P{x,y,z}(y) = 0, P{x,y,z}(z) = 0,

which fails to satisfy the MI since Px,y,z(y) = 0 < pyxpyz = 1
4 . Now take any finite T ′ such that

T ⊆ T ′. By repeated application of Theorem 3.1 we can extend the first two systems on T , above,
to T ′ in such a way that the MI is satisfied. The convex combination of the two extensions, with
equal weights, will always violate the MI. �

The non-convexity of MT has at least two important implications. The first is theoretical. It is
possible for every individual in a population to choose according to a system of choice probabilities
satisfying the MI and for the aggregate system of choice probabilities (a convex combination of
individuals’ systems of choice probabilities) not to satisfy the MI. A second implication is compu-
tational. In numerical optimization or simulation problems, it is advantageous for the domain of
optimization or simulation to be convex. If one is trying to compute supremum estimators or to sim-
ulate posterior distributions in the space MT of systems satisfying MI, one cannot, unfortunately,
rely on a convex domain.

3.3 Redundant multiplicative inequality conditions

We have already pointed out a kind of complementarity between regularity and the MI. The fol-
lowing theorem shows that if regularity is imposed, some of the instances of the multiplicative
inequality become redundant. The instances that remain more concisely describe the additional
theoretical content that the MI contributes over regularity alone.

Theorem 3.4 Suppose P is a random choice structure on master set T . Then P satisfies regularity
and the multiplicative inequality if and only if the following two conditions hold:

1. For all A ⊆ T , x ∈ A and y ∈ Ac, PA(x) ≥ PA∪{y}(x).

2. For all A ⊆ T , x ∈ A and B ⊆ Ac, PA∪B(x) ≥ PA(x)PB∪{x}(x).

Proof We begin with the necessity of conditions 1 and 2. If P satisfies regularity and the multi-
plicative inequality, then condition 1 follows directly from the definition of regularity and condition
2 follows directly from the definition of the multiplicative inequality. We now establish the suffi-
ciency of the conditions. Condition 1 is obviously sufficient for regularity, by repeated application.
Now suppose P satisfies conditions 1 and 2. Then for all A,B ⊆ T and all x ∈ A ∩B,

PA∪B(x) ≥ PA(x)P(B∩Ac)∪{x}(x)

≥ PA(x) · PB(x).

The first inequality follows from condition 2. The second is obtained by repeated application of
condition 1. �

The theorem has some theoretical interest, but also has some practical implications. In some
numerical applications, it is necessary to check whether or not a given system satisfies a particular
axiom or condition. For example, Bayesian and frequentist statistical tests of a given condition
require exploration of the space of systems, and checking that condition at many points in that
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space. The theorem tells us that if we want to check whether both the MI and regularity hold, it
suffices to check a much smaller number of instances of the MI.

For a universe T with n elements, the number of instances of the multiplicative inequalities
is n22(n−1): there are n possible objects x, and for each x, there are 2n−1 choices for each of the
menus A and B in the definition of MI. For the purposes of verifying the MI for a particular system,
we can deduct from this total the number of cases where A ⊂ B or B ⊂ A, cases for which the
inequality always holds. Also, the interchangeability of A and B makes half of the remaining cases
redundant. The theorem tells us that if regularity holds, we can further restrict the search to A
and B whose intersection is {x}.

4 Random preference models inconsistent with MI

Here we expand on the hypothetical random preference example discussed in Section 1.2, put
forward by Corbin and Marley (1974), where options are ranked x � y � z or z � y � x, each with
probability 1

2 , and the induced choice probabilities violate the MI.
We begin by defining a random preference model on T = {x, y, z} as the vector (πxyz, πxzy, πyxz, πyzx, πzxy, πzyx)

of preference probabilities, where for distinct a, b, c ∈ T , πabc is the probability of preference
a � b � c. The induced choice probabilities are pxy = πxyz + πxzy + πzxy, pyz = πyzx + πyxz + πxyz,
pzx = πzxy + πzyx + πyzx, and (PT (x), PT (y), PT (z)) = (πxyz + πxzy, πyxz + πyzx, πzxy + πzyx).

We now write the MI condition for the system P induced by a random preference model directly
in terms of the preference probabilities. The MI implies PT (x) ≥ pxypxz, which can be expressed,
after some manipulation, as

(πxyz + πxzy)(πyzx + πzyx) ≥ πzxyπyxz.

Similarly, PT (y) ≥ pyxpyz and PT (z) ≥ pzxpzy can be expressed as

(πyxz + πyzx)(πxzy + πzxy) ≥ πxyzπzyx, (12)

(πzxy + πzyx)(πxyz + πyxz) ≥ πxzyπyzx.

At first glance, these inequalities seem quite reasonable. Each of the right hand sides of these
inequalities is the product of probabilities of two rankings, each of which is the reverse of the
other.1 It might seem likely that if either of these probabilities is high, then the other is likely to
be small.

Corbin and Marley’s (1974) example gives (πyxz + πyzx)(πxzy + πzxy) = 0 and πxyzπzyx = 1
4 ,

which violates equation (12). Here we suggest that such examples may be widespread, but first
we define single-peaked preferences, introduced by Black (1948). Suppose we have a universe
T = {w1, . . . , wn}, with n ≥ 3, endowed by some objective strict ordering R of objects. For
example, each wi is a level of government spending. Without loss of generality, we assign indices
so that w1Rw2R · · ·Rwn. Let � be some preference on T and suppose, without loss of generality,
that wi is the most preferred element according to �. Then � is single-peaked relative to R if
wi � wi+1 � · · · � wn and wi � wi−1 � · · · � w1. Any single peaked preference over levels of
government spending is understandable, even if it does not agree with our own. Other preferences,
which rank an intermediate level below two levels on either side, seem bizarre.

Now consider a random preference on T that puts positive probability on every single-peaked
preference and zero probability on all others. The random preference might apply to an individual

1This makes the two rankings maximally distant from each other by Kendall’s τ metric and the Ulam distance,
although not by the Cayley and Hamming distances.
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or a population of individuals. The system of probabilities induced by the random preference
violates the MI. To see this, take the restriction of the random preference to {x, y, z} ⊆ T and
suppose, without loss of generality, that xRyRz. Then the second factor of the LHS of (12) must
be zero (the middle element can never be the least preferred of a single-peaked preference) and the
RHS must be positive.

5 Conclusions

The usual way to reconcile deterministic choice models with stochastic data is to introduce random
preferences or error terms describing deviations between the predictions of deterministic models
and observed choices. These approaches are convenient, but not usually justified by any theory.
If we want to rise to Luce’s challenge and build choice models that are supported by stochastic
foundations and that generalize existing deterministic models, one natural approach is to introduce
one or more axioms constraining binary choice probabilities and one or more axioms constraining
choice probabilities across sets of different sizes. As far as binary choice probabilities go, there are
many stochastic analogues of transitivity to choose from. One difficulty is that the relationship
between binary choice and multiple choice in stochastic environments is much more complicated. We
have surveyed some of the existing axioms and conditions constraining multiple choice probabilities:
regularity, the MI, the constant ratio rule, simple scalability and random utility.

The MI condition, despite being simple, plausible, testable and necessary for the EBA model,
has received relatively little attention, and one of the goals of this paper has been to shed more
light on it. Theorem 3.1 guarantees that binary systems can be extended to systems satisfying
MI, and the extensions can be constructed sequentially with no danger of getting stuck in dead
ends. The theorem reveals an appealing compatibility between MI and any axioms for binary
choice probabilities one might propose. The MI is a natural condition to structure the relationships
between binary and mulitiple choice probabilities because, unlike other well known conditions, it
does not constrain binary choice probabilities.

We have also shed light on the relationship between regularity and the MI. We have illustrated
the complementarity between the two conditions graphically. We have shown two intriguing results
for the special case where |T | = 3, an important case because many context effects are framed as
conditions relating choice probabilities across different subsets of a tripleton set. The first of these
results, Theorem 2.1, states that if there is a regular extension of a binary system on T then there
is a regular extension satisfying the MI. While not all regular systems satisfy the MI, imposing the
MI does not preclude the regular extension of any binary system when such an extension is possible
without it. This goes some way to establishing compatibility between regularity and the MI. It
is an open question whether this result generalizes to arbitrary T , as in the following conjecture,
extending both Theorem 2.1 and Sprumont’s (2022) result that any binary system satisfying the
triangle inequality can be extended to a regular system: if a binary system p on an arbitrary
universe T satisfies the triangle inequality then there is a system P extending p that satisfies both
regularity and the MI. A constructive proof of this conjecture based on Theorem 3.1, perhaps
imposing constraints on � or the gy(·), appears to have some promise: the monotonicity of the
extension P ′A(x) of Theorem 3.1, as A varies for fixed x 6= y, is automatically satisfied, and the
resemblance of equation (3) to condition 3 of the theorem is intriguing. On the other hand, the
monotonicity of P ′A(y) is in the wrong direction, and any constructive proof of the conjecture would
also be a constructive proof of Sprumont’s (2022) weaker result; comments in his paper and the
counterexample near the end of Section 3.1 of the current paper suggest that even this may be
difficult. The second result for the special case |T | = 3, Theorem 2.2, provides a geometric, and
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somewhat counter-intuitive, condition that is equivalent to Suck’s (2002) necessary and sufficient
condition for an independent random utility representation. Unfortunately, the sufficiency of Suck’s
(2002) condition has not been established for |T | > 3, which makes it difficult to try to extend our
result to general T . We have shown that while the set of choice probabilities satisfying regularity
is convex, the set satisfying the MI is not. Another result shows that with regularity maintained,
many instances of the multiplicative inequality are redundant. These last two results are of interest
to anyone doing empirical testing of the MI and related constraints, or model-free estimation of
choice probabilities subject to these constraints, where it is important to check whether a given
system satisfies regularity and the MI.

The paper supports the advice that the MI should not stand alone in any stochastic model.
Theorem 3.1 implies that the MI fails to rule out any systems of binary choice probabilities, however
unrealistic. Furthermore, the results and observations in Section 2.2 suggest that a large fraction of
the volume of MT is taken up by implausible systems of choice probabilities, having such features as
stochastically intransitive cycles of binary choice probabilities and large departures from regularity.
The paper also gives reasons to consider regularity and suitable binary choice axioms as candidate
additional conditions.

We have also provided some conditions on random preferences where violations of the MI are
bound to occur. The result suggests that in environments where we expect single peaked preferences
to be more plausible than other preferences, we should not be surprised to find violations of the
MI.

McCausland is planning future work testing the MI (conjointly with regularity and conjointly
with various conditions on binary choice probabilities) using a wide variety of small choice universes,
where for each universe we collect choice frequency data for all doubleton and larger subsets of the
universe and thereby expose all implications of the MI to possible falsification.
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A Axioms and conditions

The system of choice probabilities P on the universe T satisfies

weak stochastic transitivity if for all distinct x, y, z ∈ T ,

pxy ≥ 1
2 and pyz ≥ 1

2 ⇒ pxz ≥ 1
2 ;

moderate stochastic transitivity if for all distinct x, y, z ∈ T ,

pxy ≥ 1
2 and pyz ≥ 1

2 ⇒ pxz ≥ min[pxy, pyz];

strong stochastic transitivity if for distinct x, y, z ∈ T ,

pxy ≥ 1
2 and pyz ≥ 1

2 ⇒ pxz ≥ max[pxy, pyz];
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the triangle inequality if for distinct x, y, z ∈ T ,

pxy + pyz ≥ pxz;

constant ratio rule if for all x, y ∈ A,
pxy
pyx

=
PA(x)

PA(y)
,

whenever the denominators do not vanish;

order independence if for all A,B ⊆ T , x, y ∈ A−B and z ∈ B

PA(x) ≥ PA(y)⇔ PB∪{x}(z) ≤ PB∪{y}(z),

provided the choice probabilities on the two sides of either inequality are not both 0 or 1;

the Block-Marschak conditions if for all x ∈ A ⊆ T ,∑
B : A⊆B⊆T

(−1)|B\A|PB(x) ≥ 0; (13)
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