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• We complete a testing ground for axioms of discrete probabilistic choice.
• Prior and posterior distributions cover m-ary, not just binary choice.
• Posterior simulation methods accommodate prior dependence of choice probabilities.
• Simulation methods survive tests of conceptual and implementation correctness.
• For data we use, Bayes factors support random utility, not multiplicative inequality.
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a b s t r a c t

We complete the development of a testing ground for axioms of stochastic discrete choice, begun in
McCausland and Marley (2013). Our contribution here is to develop new posterior simulation methods
for Bayesian inference, suitable for a class of prior distributions introduced in that paper. These priors
are joint distributions over various discrete choice distributions on choice sets of different sizes. Choice
distributions over different choice sets can be mutually dependent, so the priors are not in general
conjugate; this calls for new Markov chain Monte Carlo posterior simulation methods. We demonstrate
the methods by analysing data from a previously reported experiment and report the resulting evidence
for and against various axioms.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We consider an environment where agents face various choice
sets A, each a subset of the same finite master set T = {x1, . . . , xn}
of objects. Agents choose a single object from a choice set A each
time it is presented to them.

Most models for stochastic discrete choice specify or imply
choice probabilities PA(x), the probability of choosing object x
when presented with choice set A, for all x 2 A ✓ T . We assume
that these choice probabilities describe the choice behaviour of a
single agent. This assumption holds for the data we analyse here;
alternatively, we could interpret choice probabilities as describing
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the choice behaviour of agents randomly drawn from some pop-
ulation. We also assume that choices are statistically independent
across presentations of choice sets and that choices on identical
choice sets are identically distributed. We document below some
criticism and also some empirical support of this independent and
identically distributed (i.i.d.) assumption for the data we analyse.

A random choice structure (T , P) is the complete specification of
the PA(x), x 2 A ✓ T . As such, a random choice structure with
no restrictions on probabilities is a non-parametric model. It is
true that it consists of a finite number of unknown probabilities,
but this is a consequence of the finite nature of choice sets,
not the imposition of a restrictive finite-dimensional parametric
distribution.

With flexibility comes the danger of over-fitting and poor out-
of-sample predictive performance. Prior information can impose
discipline, and it can come inmany forms, including choice axioms
imposing constraints on probabilities across choice sets. Various
axioms have been suggested in the literature. See below for some
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examples and McCausland and Marley (2013) for further discus-
sion, including graphical illustrations of the relationships among
them and citations to the literature.

The purpose of this paper is to propose, implement and demon-
strate a testing ground for probabilistic choice axioms in an ab-
stract choice setting. It involves applying methods of Bayesian
model comparison to measure the plausibility of axioms in the
light of discrete choice data. These include compound axioms, ob-
tained as the union, intersection or complement of other axioms.
We investigate several particular axioms, but emphasize that our
approach can be used to evaluate others, including those yet to be
proposed. Using data from a previously reported experiment, we
find that Bayes factors give more support to the random ranking
(commonly, but not universally, known as random utility) hypoth-
esis than to the triangle inequality, a necessary condition for ran-
dom ranking. This is possible because the Bayes factor in favour of
an axiomdepends not only on its posterior probably but also, nega-
tively, on its prior probability. We also find much evidence against
the multiplicative inequality, a necessary condition for indepen-
dent random utility.

1.1. Some axioms from the literature

Some axioms pertain only to binary choice probabilities. Due
to the importance of these probabilities, we adopt a standard
notational convention: for all distinct x, y 2 T , we write p(x, y)
for P

{x,y}(x). The random choice structure (T , P) satisfies

WST weak stochastic transitivity if and only if for all distinct x,
y, and z,

p(x, y) �

1
2

and p(y, z) �

1
2

H) p(x, z) �

1
2
,

MST moderate stochastic transitivity if and only if for all distinct
x, y, and z,

p(x, y) �

1
2

and

p(y, z) �

1
2

H) p(x, z) � min[p(x, y), p(y, z)],

SST strong stochastic transitivity if and only if for all distinct x,
y, and z,

p(x, y) �

1
2

and

p(y, z) �

1
2

H) p(x, z) � max[p(x, y), p(y, z)],

TI the triangle inequality if and only if for all distinct x, y, and
z,

p(x, y) + p(y, z) + p(z, x) � 1.

Other axioms constrain choice probabilities on differently sized
choice sets. We say that (T , P) satisfies

Reg regularity if and only if for all A, B ✓ T and for all x 2 A,

PA(x) � PA[B(x).

MI the multiplicative inequality if and only if for all A, B ✓ T
and all x 2 A \ B,

PA[B(x) � PA(x) · PB(x).

For MI, see Colonius (1983), Sattath and Tversky (1976) and
Suck (2002). For the remaining conditions, see Luce and Suppes

(1965). MI should not be confused with the multiplication con-
dition in Luce and Suppes (1965), which is a different axiom, in-
volving only binary choice probabilities. McCausland and Marley
(2013) survey inmore detail the literature on theorems about these
axioms, and graphically illustrate some of the relationships among
them.

We will need some more notation to define a final condition.
For all non-empty A ✓ T , we define R(A) as the set of rankings
on A; a ranking distribution on A is a pair (A, ⇧) such that ⇧ is
a probability mass function on R(A). For any ranking distribution
(T , ⇧), we define the random choice structure induced by (T , ⇧)
as the random choice structure (T , P⇧ ) such that for all non-empty
A ✓ T , and all x 2 A,
P⇧
A (x) =

X

{� 2R(T ):h�(A)=x}

⇧(�),

where for every nonempty A ✓ T and every rank order � 2 R(T ),
h

�
(A) is the highest �-ranked object in A.
Our final condition is this: a random choice structure (T , P) sat-

isfies the random ranking hypothesis, denoted RR, if there is a rank-
ing distribution (T , ⇧) such that P = P⇧ . While this definition
is not framed in terms of choice probabilities, there are necessary
and sufficient conditions that are, due to Falmagne (1978). Fiorini
(2004) identifies a necessary and sufficient subset of these condi-
tions that are indispensable: for all non-empty A ✓ T and all x 2 A,
X

B:A✓B✓T

(�1)|B\A|PB(x) � 0. (1)

Block and Marschak (1960) and Luce and Suppes (1965, Theo-
rem 49) show that for finite master sets the random ranking hy-
pothesis is equivalent to what is often known as ‘‘random utility’’.
Random utility models are those in which agents select from each
choice set as if they drew, independently and from the same con-
tinuous distribution, a vector of random utilities, one utility for
each element of themaster set, and thenwent on to choose the util-
itymaximizing element from that set. The assumption that utilities
have a continuous distribution implies that the probability that any
two utilities are equal is zero.2 If the definition is only asserted for
the binary choice probabilities, then the model is called a binary
random utility model. If the utilities ux, x 2 T , are mutually inde-
pendent, then we say the model is an independent random utility
model. When the master set has no more than five elements, TI is
necessary and sufficient for binary random utility; see Dridi (1980)
for a proof. No such complete description is knownwhen the mas-
ter set has more than five elements, though many complicated
necessary conditions are known: Charon and Hudry (2010) and
Doignon, Fiorini, and Joret (2007). Sattath and Tversky (1976) show
that MI is necessary for an independent random utility model.

There is a relatively long history in Economics, Psychology
and Marketing, of theory and application of stochastic discrete
choice models. Most of these models are random utility models.
Widely used randomutilitymodels include the (multinomial) logit,
(multinomial) probit, McFadden (1977)’s Generalized Extreme
Value (GEV) model, the class of mixed (multinomial) logit models
and Tversky (1972)’s Elimination By Aspects (EBA) model.

Multinomial logit models are independent random utility mod-
els by construction. Probit models are random utility models, also
by construction, but not necessarily independent random utility
models. The class of GEV models explicitly includes logit, nested
logit, paired combinatorial logit and generalized nested logit mod-
els. McFadden (1977) shows that a representation of choice proba-
bilities characterizing GEV is equivalent to a random utility model

2 Continuity can be replaced by the more general property of noncoincidence
(Regenwetter & Marley, 2001, Definition 4) which explicitly states that the
probability of two or more random variables being equal has measure zero.



W.J. McCausland, A.A.J. Marley / Journal of Mathematical Psychology 62–63 (2014) 33–46 35

where the vector of utilities has a generalized extreme value distri-
bution. Dagsvik (1994) shows that the GEV class is dense in the set
of random utility models. As such, it includes dependent random
utility models. The class of mixed logit models explicitly includes
latent class logit models, which are discrete mixtures of multi-
nomial logit models. McFadden and Train (2000) show a limiting
equivalence of the set of mixed multinomial logit models and the
set of random utility models. See Train (2009) for more on logit,
probit, GEV and mixed logit.

The EBA model is not explicitly constructed as a random utility
model, but Tversky (1972, Theorem 7) shows that it is indeed one.
Sattath and Tversky (1976) show that EBAmodels satisfyMI,which
we have seen is a necessary condition for independent random
utility; however, Tversky (1972) gives an example of an EBAmodel
that is not an independent random utility model.

In Economics andMarketing, probabilistic discrete choicemod-
els are almost exclusively random utility ones. In Psychology, ran-
dom utility models, including logit, probit and EBA, are commonly
used. See summaries in Luce (1977), Luce (1994), Luce and Suppes
(1965) and Marley’s (1992a; 1992b; 2002) editorial introductions
to special journal issues. Models that are not necessarily random
utility models include dynamic stochastic choice models such as
decision field theory models and the leaky competing accumulator
model. These are summarized in Busemeyer and Rieskamp (2013)
and Rieskamp, Busemeyer, andMellers (2006). See Marley and Re-
genwetter (in press) for an integrated review of the above, and
more recent, literature.

1.2. Statistical methods for testing axioms

There is a long history of using data on observed choice
frequencies to support or undermine probabilistic choice axioms.
Regenwetter, Dana, and Davis-Stober (2011) survey some of the
approaches used in the literature on stochastic transitivities. Many
studies interpret frequencies as probabilities, and measure the ev-
idence for or against an axiom by the number of necessary condi-
tions that are violated; such an approach ignores sampling varia-
tion. Other studies take into account sampling variability, but run
intomultiple testing problems, by performingmultiple tests of var-
ious necessary conditions rather than a single joint test of a set of
necessary and sufficient conditions. Another issue is using distri-
butions for test statistics that are not even asymptotically correct
under the null hypothesis that an axiom holds; correct frequentist
inference is notoriously difficult when parameter values are sub-
ject to inequality constraints and point estimates of parameters are
on or near the boundary of the constrained set. The above prob-
lems can well lead to erroneous conclusions; in addressing them,
Iverson and Falmagne (1985) overturn the conclusions of Tversky
(1969). Regenwetter et al. (2011), using data they collected, also
test axioms using frequentist methods that avoid the above prob-
lems.

Cavagnaro and Davis-Stober (2014), Myung, Karabatsos, and
Iverson (2005) and Zwilling, Cavagnaro, and Regenwetter (2011)
take a Bayesian approach to testing axioms taking the form of in-
equality restrictions over probabilities. Testing these constraints
or estimating parameters subject to them is conceptually straight-
forward in a Bayesian framework. A baseline model, consisting of
a prior distribution over the set of relevant choice probabilities,
serves as an encompassing model. A restricted model is obtained
by truncating the prior distribution to the set of probability con-
figurations that satisfy some axiom. The Bayes factor in favour of
the restricted model, versus the baseline model, equals the ratio of
posterior to prior probability of the restriction holding, given the
baseline model.

Cavagnaro and Davis-Stober (2014) and Myung et al. (2005)
both use a uniform prior on the space of relevant binary choice

probabilities to define their baseline model. Probabilities for dis-
tinct pairs of objects are independent and their marginal distri-
butions are all uniform on [0, 1]. Truncation to the region where
some axiom holds typically induces dependence and non-uniform
marginals. Myung et al. (2005) discuss two possible extensions,
to non-uniform priors and non-binary probabilities. They suggest
Beta distributions as non-uniform priors for binary choice prob-
abilities and Dirichlet priors for non-binary choice probabilities.
Their claim that these priors are conjugate for a likelihood function
arising from choice observations implies that they have in mind
a joint prior distribution where choice probabilities over distinct
choice sets are independent.

McCausland and Marley (2013) introduces a family of joint
distributions over all the choice probabilities in a random choice
structure. The marginal distributions are symmetric Dirichlet, but
choice probabilities across choice sets need not be independent.
As far as we know, this is the first paper to propose a baseline
model where choice probabilities are dependent. Unfortunately,
this dependence destroys conjugacy, whichmakes it more difficult
to simulate from the posterior distribution. Until now, these priors
have not been used for empirical analysis. The present paper de-
velops the posterior simulation methods needed for inference.

1.3. Empirical evidence for and against various axioms

Rieskamp et al. (2006) review the empirical literature testing
weak and strong stochastic transitivity and regularity. They
conclude that although some have found systematic violations
of weak stochastic transitivity, the violations are limited to rare
and unusual situations. However, they point to an ‘‘overwhelming
number of studies’’ suggesting that human behaviour does not
satisfy strong stochastic transitivity.

They also document evidence against the regularity axiom.
Since regularity is necessary for random utility, violations of the
former are violations of the latter. They identify different types
of regularity violations, including attraction and asymmetrical
dominance effects. Trueblood, Brown, Heathcote, and Busemeyer
(2013) demonstrate similar effects in simple perceptual decision
making tasks.

To our knowledge, the multiplicative inequality has not been
tested directly. Independent random utility, a stronger condition,
is considered by many to be too inflexible, but it is not known how
consistent the multiplicative inequality is with observed choices.

1.4. Prior distributions for random choice structures

Bayesian analysis involves the choice of a prior distribution.Mc-
Causland and Marley (2013) propose a class of prior distributions
on the space of random choice structures, indexed by two param-
eters, ↵ and �. The ↵ parameter governs how consistent an agent
is likely to be in repeated choices from the same choice set; for
low values of ↵, a random choice structure drawn from the prior
is likely to feature choice probabilities PA(x) close to zero and one;
for high values of ↵, they are likely all to be close to 1/|A|. The � pa-
rameter governs the degree of dependence of choice probabilities
across choice sets. For � = 0, the vectors (PA(x))x2A are mutually
independent for different A ✓ T ; thus learning PA(·) gives no in-
formation about PB(·). For � = 1, the random choice structure sat-
isfies the random ranking hypothesis with probability one. While
we do not know the joint density over the space of random choice
structures in closed form, we do know the marginal distributions.
They are

(PA(x1), . . . , PA(x|A|
)) ⇠ Di

✓
↵

|A|!

, . . . ,
↵

|A|!

◆
,

where Di(·) denotes the Dirichlet distribution—see Forbes, Evans,
Hastings, and Peacock (2011).
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1.5. Outline

Section 2 describes a model for discrete stochastic choice,
consisting of a hierarchical prior distribution for the randomchoice
structure (T , P) associated with an individual decision maker. The
highest level of the hierarchy gives a prior distribution for the
hyper-parameters ↵ and � of the class of priors in McCausland and
Marley (2013).

Section 3 describes Bayes factors, which we use to document
the evidence for or against various axioms of discrete stochastic
choice. In all the cases we consider, the event that an axiom holds
has non-zero prior probability. In these cases, the Bayes factor of
an axiom, with respect to a baseline model, equals the ratio of
posterior to prior probabilities of the axiom holding in the baseline
model.

Section 4 describes posterior simulation methods. A conse-
quence of our decision to allow prior dependence across choice
sets is that the joint prior distribution over all choice probabilities
is not conjugate for the entire likelihood function. It does not help
us that themarginal prior distribution of each PA(·) is Dirichlet, the
conjugate distribution for the likelihood function for independent
categorical data, because of this prior dependence. Not being able
to exploit conjugacy to draw directly from the posterior distribu-
tion, we develop Markov chain Monte Carlo (MCMC) simulation
methods to simulate from the posterior distribution and thereby
compute posterior moments and quantiles of interest.

Section 5 reports results from the analysis of data fromprevious
experiments. Section 6 concludes.

2. An unrestricted model for discrete stochastic choice

A random choice structure (T , P) gives a family of distributions
for discrete stochastic choice. Here we complete the model by
specifying a hierarchical prior distribution for the random choice
structure (T , P) associated with an individual decision maker.
Choice structures are independent across individuals. We will
call the model completed in this way the unrestricted model and
denote itM . Later, we consider various restrictedmodels, obtained
by imposing different choice axioms. Imposing a choice axiom
amounts to truncating the prior distribution to the region where
the axiom holds.

We obtain the hierarchical prior distribution by specifying a
prior distribution for the two fixed parameters, ↵ and �, indexing
the class of prior distributions introduced in McCausland andMar-
ley (2013). The resulting mixture distribution is the unrestricted
model. The joint prior for ↵ and � is the distribution implied by a
joint prior over hyper-parameters � and �̃, of which ↵ and � are
deterministic functions.

Specifically, we give the joint distribution of two hyper-para-
meters � and �̃, a vector � of latent variables and the random
choice structure (T , P). At the upper level of the hierarchy are
two hyper-parameters, � and �̃, a priori independent with Gamma
distributions

� ⇠ Ga(a, b), �̃ ⇠ Ga(ã, b̃). (2)

The two parameters ↵ and � in McCausland and Marley (2013) are
given as the following transformations of � and �̃:

� =

�

� + �̃
, ↵ = � + �̃.

We use � and �̃ only for computational convenience; ↵ and � are
the parameters of interest. When b = b̃ in (2), the implied joint
prior distribution of ↵ and � is such that ↵ and � are independent,
with Beta (resp. Gamma) distributions

� ⇠ Be(a, ã), ↵ ⇠ Ga(a + ã, b). (3)

The next level of the hierarchy gives the conditional distribution of
latent variables given hyper-parameters, a distribution described
inMcCausland andMarley (2013). Given hyper-parameters, the la-
tent variables are conditionally independent. For each ranking� 2

R(T ), there is a latent variable � (�) with conditional distribution

� (�)|�, �̃ ⇠ Ga
✓

�

n!
, 1
◆

. (4)

For each choice set A and each ranking � 2 R(A), there is a latent
variable �̃A(�) with conditional distribution

�̃A(�)|�, �̃ ⇠ Ga

 
�̃

|A|!

, 1

!

. (5)

The lowest level of the hierarchy gives choice probabilities as de-
terministic functions of the latent variables:

PA(x) =

P
� 2R(T ):x=h�(A)

� (�) +

P

�
0
2R(A):x=h

�
0 (A)

�̃A(�
0)

P
� 2R(T )

� (�) +

P

�
0
2R(A)

�̃A(�0)
. (6)

We denote by � the vector of all weights � (�) and �̃A(�
0).

We use the same prior distribution for all participants in all
experiments, and do posterior inference for each participant sep-
arately. Alternatively, one could extend the hierarchical prior to
induce dependence of random choice structures across partici-
pants – the resulting joint analysis would ‘‘borrow strength’’ across
individuals – but we do not pursue this here.

Thus, we do not need to introduce notation to distinguish
participants in the experiment. For the remainder of the section,
we assume we are discussing the choices of a single participant.

For every A ✓ T and x 2 A, let NA(x) denote the number of
times the participant chooses object xwhen presentedwith choice
set A. For each A ✓ T , let NA be the vector (NA(x))x2A of choice
counts associated with A. Let N be the vector of all choice counts,
(NA(x))A✓T ,x2A. In some cases, there will be one or more choice sets
B the participant never sees. In each such case, we set the vector
NB(·) to zero. Note that since the PA(·), A ✓ T , are statistically
dependent across choice sets, the posterior distribution of PB(·),
with B not seen by the participant, will typically not be the same
as its prior distribution.

Since we assume choice events are independent across trials,
the log likelihood function can be written as

L(� ;N) =

X

A✓T

X

x2A

NA(x) log PA(x).

It will be helpful to decompose the log likelihood by choice set.
Accordingly, we write

L(� ;N) =

X

A✓T

LA(� ;N), where

LA(� ;N) =

X

x2A

NA(x) log PA(x).

3. Bayes factors

We evaluate the plausibility of an axiom in the light of observed
data by reporting a simulation consistent approximation of the
Bayes factor in favour of a restricted modelMr , in which the axiom
holds, against the unrestricted model M . By Bayes’ rule, we can
express this Bayes factor as

Pr[N|Mr ]

Pr[N|M]

=

Pr[N|⇤,M]

Pr[N|M]

=

Pr[⇤|N,M]

Pr[⇤|M]

,
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where ⇤ is the event that the axiom holds for (T , P). The first
equation is from the definition of the restricted model; the second
is Bayes’ rule.

The left hand side gives the Bayes factor as it is usually defined,
in terms of a ratio of marginal likelihoods. The right hand side
is a ratio of the posterior to the prior probability of the axiom
holding in the unrestricted model. A high posterior probability is a
measure of how consistent the data arewith the axiom; a low prior
probability is a measure of how small or parsimonious the model
becomes when the axiom is imposed. In McCausland and Marley
(2013),we pointed out that since the numerator probability cannot
exceed one, the reciprocal of an axiom’s prior probability gives an
upper bound on the Bayes factor in favour of the restricted model
inwhich the axiomholds. Nomatter howmuchdata is collected for
a single decisionmaker, the Bayes factor cannot exceed this bound.

Wewill approximate the numerator anddenominator probabil-
ities using prior and posterior simulation, respectively, and com-
pute numerical standard errors measuring simulation noise.

4. Prior and posterior simulation

Most techniques of Bayesian empirical analysis involve com-
putingmoments and quantiles of prior or posterior distributions of
unknownquantities. Prime examples include point and interval es-
timation, model comparison, prior and posterior predictive analy-
sis, and out-of-sample prediction. See Berger (1985), Bernardo and
Smith (1994) and Geweke (2005). In our case, we will be comput-
ing prior and posterior probabilities, which are means of indicator
functions, as well as prior and posterior moments of the ↵ and �
parameters.

Closed form evaluation of many prior and most posterior
moments and quantiles is intractable, so practitioners usually
apply Monte Carlo simulation methods. First, they draw a sample
from the appropriate target distribution; then they approximate
moments and quantiles of the target by their sample counterparts.
Independence Monte Carlo, based on an i.i.d. sample, is usually
practical when the target is the prior distribution but not when it
is the posterior. For the posterior distribution, most use Markov
chain Monte Carlo methods. Laws of large numbers and central
limit theorems for ergodic Markov chains are available to describe
and measure simulation error. For texts introducing MCMC, see
Brooks, Gelman, Jones, and Meng (2011), Gilks, Richardson, and
Spiegelhalter (1996) and Robert and Casella (2010). For details
on basic Markov chain asymptotic theory, see Meyn and Tweedie
(1993).

Wewill report posterior moments of ↵ and �, and Bayes factors
in favour of various axioms, for a baseline model M7 specified in
Section 5. We also perform a robustness analysis, showing how
sensitive the results are to the choice of prior distribution. To do so,
we compute moments and Bayes factors for nine different models,
M1 throughM9. These models differ only in terms of the prior, and
all priors have full support on the set of random choice structures.

While we are only interested in results for the nine models,
we simulate from the prior and posterior distributions of a differ-
ent model, M0. As detailed in Section 5.3, we then use importance
sampling to compute prior and posterior probabilities and other
moments for the nine models M1 through M9. Importance sam-
pling amounts to re-weighting the various draws from the pos-
terior sample such that weighted sample moments approximate
population moments for one of the models M1 through M9. We
never simulate directly from these models. Numerical efficiency is
not as great as it would be if we had used a chain for each model,
but this would have required nine times as much simulation for
the same posterior sample size. See Geweke (1989) for more on
importance sampling.

Prior simulation is straightforward:weobtain an i.i.d. sample by
direct simulation from the Gamma distributions in (2), (4) and (5).
We use routines from the GNU Scientific Library to draw Gamma
random variables.

Posterior simulation is more difficult, and we develop MCMC
methods for this. In Section 4.1 and Appendix A, we describe the
Markov chains we use to sample from the posterior distribution.
In Section 4.1.4 we describe how to use importance sampling to
reweight the prior and posterior samples we obtain for model M0,
in order to compute prior and posterior moments for the models
M1, . . . ,M9. We also show how to compute numerical standard
errors, a measure of simulation noise. The prior definingM0 is such
that the importance sampling weights are bounded, which implies
that the numerical standard errors are bounded.

Computing prior and posterior probabilities of axioms involves
repeated evaluation of an indicator function over several different
random choice structures. To determine whether an axiom holds
for a given random choice structure, we use the robust methods
described in McCausland and Marley (2013), to guard against
classification errors due to machine rounding error.

4.1. Posterior simulation

The posterior simulation method described here is the main
contribution of this paper. It allows Bayesian inference for random
choice models given discrete choice data, for the class of priors
described in McCausland and Marley (2013). This class of priors is
more flexible than those used in previous work, but the resulting
non-conjugacy means that posterior simulation is more difficult.

We describe the method in this section, in enough detail to
reproduce the results. We are happy to provide source code in
C and R on request. The method is an example of Markov chain
Monte Carlo (MCMC), and we assume that the reader has some
familiarity with these methods. We mention some introductory
texts above. Some technical theoretical material, required to show
that the proposedMarkov chains are appropriate for simulating the
posterior distribution, are left to Appendix A.

We now describe an ergodic Markov chain whose unique
invariant (or stationary) distribution is the posterior distribution
for the unrestricted model in Section 2. The posterior distribution
is the conditional distribution of hyper-parameters �, �̃ and �
given data N . As in many chains used for posterior simulation, the
random transition from the current state of the chain to the next
consists of a sequence of several Metropolis–Hastings transitions,
each updating some of the unknown quantities of the model in
such a way as to preserve the posterior distribution. When we say
that a stochastic transition preserves a distribution we mean that
the distribution is an invariant distribution of the Markov chain
implied by that transition. See Chib and Greenberg (1995) for a
tutorial on the Metropolis–Hastings algorithm.

A single transition of the chain consists of a sequence of three
Metropolis–Hastings updates, described in Sections 4.1.1–4.1.3.
Once we have a posterior sample � (j), j = 1, . . . , J , we can obtain
a posterior sample P (j), j = 1, . . . , J , using (6), draw by draw.

4.1.1. A Metropolis–Hastings update for � and � (�), � 2 R(T )

The first update is a Metropolis–Hastings transition replacing
current values � and � (�), � 2 R(T ), with random new values �0

and � 0(�), � 2 R(T ). It preserves the conditional distribution of �
and � (�), � 2 R(T ), given �̃, other latent variables, and data N .

1. Draw � ⇠ Be(⇡a, (1 � ⇡)a) and ✏ ⇠ Ga((1 � ⇡)a, b), with
� and ✏ mutually independent and independent of the history
of the chain, and form the candidate value �⇤

= �� + ✏.
Since � and ✏ are only devices used to obtain �⇤, they are
discarded. The random transition from � to �⇤ is an example
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of a Beta–Gamma transition, and it preserves the conditional
distribution of � given a and b—seeAppendix A. Here,⇡ 2 (0, 1)
is a fixed parameter, chosen before running the chain. It governs
the degree of dependence between � and �⇤, which in turn
affects the numerical precision of the chain. If ⇡ is very small,
then � and �⇤ are nearly independent, large changes in �⇤ are
possible, but the acceptance probability in step (3) below may
be quite low, leading to low numerical precision. If ⇡ is very
large, the acceptance probability is larger, but �⇤ will usually
be close to �, and it might take a large number of iterations to
move reasonable distances through the region of high posterior
probability. In the simulations reported below,we use the value
⇡ = 0.5 and find that numerical efficiency is not very sensitive
to the value of ⇡ when ⇡ is close to 0.5.

2. For all � 2 R(T ),
(a) if �⇤ > �, draw the proposal � ⇤(�) from the following

conditional distribution of � ⇤(�) given � (�), � and �⇤:

� ⇤(�) � � (�) ⇠ Ga
✓

�⇤
� �

n!
, 1
◆

.

(b) if �⇤
 �, draw � ⇤(�) from the following conditional

distribution:
� ⇤(�)

� (�)
⇠ Be

✓
�

n!
,
� � �⇤

n!

◆
.

In a sense, this step corrects the � (�)weights for the change in
their shape parameter from � to � ⇤. When � ⇤ is larger than � ,
we add a Gamma randomvariable to each � (�) to compensate;
when it is smaller, we multiply by a fraction equal to a Beta
random variable. See Appendix A for details.

3. Jointly accept the proposal consisting of �⇤ and � ⇤(�), � 2

R(T ), with probability

min
✓

L(� ⇤
;N)

L(� ;N)
, 1
◆

.

Accepting the proposal means setting new values equal to
proposals; here, setting �0

= �⇤ and � 0(�) = � ⇤(�), � 2 R.
Rejecting means setting new values equal to old values; here,
setting �0

= � and � 0(�) = � (�), � 2 R.
Appendix A shows that the update described here is a true
Metropolis–Hastings update of the conditional distribution of �
and � (�), � 2 R, given data, other parameters and other latent
variables.

4.1.2. A Metropolis–Hastings update for �̃ and �̃A(�), A ✓ T , � 2

R(A)
The second update does something very similar for the hyper-

parameter �̃ and the �̃A(�), A ✓ T and � 2 R(A).

1. Draw � ⇠ Be(⇡ ã, (1 � ⇡)ã) and ✏ ⇠ Ga((1 � ⇡)ã, b̃),
independently, and form �̃⇤

= ��̃ + ✏.
2. For all non-empty A ✓ T and � 2 R(A),

(a) if �̃⇤ > �̃, draw

�̃ ⇤

A (�) � �̃A(�) ⇠ Ga

 
�̃⇤

� �̃

|A|!

, 1

!

(b) if �̃⇤
 �̃, draw

�̃ ⇤

A (�)

�̃A(�)
⇠ Be

 
�̃

|A|!

,
�̃ � �̃⇤

|A|!

!

.

3. Jointly accept �̃⇤ and �̃ ⇤

A (�), A ✓ T and � 2 R(A), with
probability

min
✓

L(� ⇤
;N)

L(� ;N)
, 1
◆

.

Appendix A shows that this update is a true Metropolis–Hastings
update of the conditional distribution of �̃ and �̃A(�), A ✓ T and
� 2 R, given data, other parameters and other latent variables.

4.1.3. A Metropolis–Hastings update for �̃A
1. For all A ✓ T and � 2 R(A),

(a) draw �̃ ⇤

A (�) ⇠ Ga
⇣

�̃
|A|!

, 1
⌘
,

(b) accept �̃ ⇤

A (�) with probability

min
✓

LA(�
⇤
;N)

LA(� ;N)
, 1
◆

.

This a sequence of direct Metropolis updates, each updating the
conditional distribution of one of the �̃ ⇤

A (�) given everything else.
These updates do not change the state of the chain by much.
Furthermore, they are dispensable, in the sense that MCMC would
be correct if they were omitted. This is because the variables
being updated are also updated in the secondMetropolis–Hastings
update. However, they are cheap because only parts of the
likelihood need to be re-evaluated for each A ✓ T .

4.1.4. Reweighting using importance sampling
Let (↵(j), �(j), � (j)), j = 1, . . . , J be a sample from the posterior

distribution corresponding to model M0. We want to use this
sample as an importance sample to compute posterior moments
for the model Mi. We evaluate, at each posterior draw j, the prior
density f0(↵, �) for modelM0 and the prior density fi(↵, �) for the
model i for which we want to compute posterior moments. The
importance sampling weights are

wij =

fi(↵(j), �(j))

f0(↵(j), �(j))
.

Suppose h(↵, �, � , P) is a function whose posterior mean we
want to compute for model Mi. Assume the posterior mean exists.
For example, h could be the indicator function with value 1
whenever the random choice structure P satisfies weak stochastic
transitivity and value 0 whenever it does not. In this example,
the posterior mean is the posterior probability that P satisfies
weak stochastic transitivity, the numerator in the Bayes factor in
favour of the model Mi with WST imposed, relative to the model
Mi. A simulation consistent approximation of E[h(↵, �, � , P)|Mi]

is given by

ĥ ⌘

N
D

⌘

JP
j=1

wijh(↵(j), �(j), � (j), P (j))

JP
j=1

wij

. (7)

We compute an approximation of the variance of ĥ, random
because it depends on the realization of the Markov chain, using
the deltamethod and the overlapping batchmeans (OBM)method.
See Flegal and Jones (2010) for a description of the OBM method
and some of its asymptotic properties. The delta method gives the
approximation

�̂ 2
h =

�̂ 2
N � 2ĥ�̂ND + ĥ2�̂ 2

D

D2

of the numerical variance of the ratio ĥ in (7), where �̂ 2
N , �̂

2
D and

�̂ND are the OBM estimators of the variances of the numerator and
denominator and their covariance, respectively.We call the square
root, �̂h, the numerical standard error (NSE) of ĥ.

The Bayes factor in favour of Mi, over M0, is a posterior mean
whose simulation consistent sample counterpart is the denomina-
tor D in (7). The variance of its numerical error is approximated by
�̂ 2
D . logD is a simulation consistent approximation of the variance

of the log Bayes factor. The delta method approximation of its vari-
ance is �̂ 2

D/D2.
We use a similar approach to compute numerical errors for the

prior distribution.
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Table 1

Sample probabilities for ‘‘Getting it right’’ computations.

p q p̂, � NSE p̂, �̃ NSE

0.1 0.6221 0.0999 0.0005 0.1004 0.0005
0.2 0.7289 0.1998 0.0007 0.1998 0.0007
0.3 0.8133 0.2993 0.0008 0.2996 0.0008
0.4 0.8904 0.3995 0.0009 0.3996 0.0009
0.5 0.9669 0.5001 0.0009 0.4992 0.0009
0.6 1.0476 0.6004 0.0009 0.5992 0.0009
0.7 1.1387 0.7000 0.0008 0.6995 0.0009
0.8 1.2519 0.7998 0.0007 0.7997 0.0007
0.9 1.4206 0.8998 0.0005 0.9004 0.0005

5. Results

Here we report results from simulations testing the correctness
of our posterior simulation methods, and do posterior analysis for
data from an experiment described in Regenwetter et al. (2011).
We also perform a robustness analysis to assess the sensitivity
of results to the choice of prior, and compare our results with
those obtained using a model where choice probabilities are
independent across choice sets.

5.1. Getting it right

We perform a simulation whose sole purpose is to test the
correctness of our posterior simulation methods. This is a purely
pre-data exercise, involving only artificial data. The tests described
here are similar to those described in Geweke (2004). We draw
a sample from the joint distribution of hyper-parameters, latent
variables and data, for an artificial choice experiment where the
master set has n = 3 elements and all subsets of size two and
three are presented exactly once. We complete the specification
of the prior by choosing values a = ã = 10 and b = b̃ = 0.1, and
complete the specification of the proposal distribution by choosing
the value ⇡ = 0.5. We obtain a sample of size J = 106.

The initial draw is a direct draw from the joint distribution of
�, �̃, � and N , obtained by first drawing hyper-parameters � and
�̃ from their prior distribution, then the latent variable vector �

from its conditional distribution given � and �̃, and then data from
their discrete conditional distribution given � . Subsequent draws
are the output of aMarkov chainwhose invariant distribution is the
joint distribution of �, �̃, � and N . A single transition of the chain
consists of four Metropolis–Hastings updates. Three are the very
same updates used to update the posterior distribution. The fourth
is a direct draw of N from its conditional distribution given hyper-
parameters and latent variables.

If the Markov chain has the correct invariant distribution
and if data simulation and posterior simulation are implemented
correctly, then a realization of the chainmust be a sample of draws
from the correct joint distribution, although the draws will be
serially dependent. This is a very strong condition that leads to
multiple tests of program correctness.

We test 18 hypotheses implied by program correctness. We
know that the marginal distributions of � and �̃ are the same as
their prior distributions, both Ga(10, 0.1). At all draws of � and
�̃ in the sample, we evaluate indicator functions 1

[0,q](·), for nine
different values of q. The value of the indicator function is onewhen
its argument is in the interval [0, q] and zero otherwise. The values
of q are the quantiles of the Ga(10, 0.1) distribution corresponding
to the nine probabilities p = 0.1, 0.2, . . . , 0.8, 0.9. The nine values
of p and q are tabulated in Table 1.

We then compare the sample means of these indicator func-
tions with what their population counterparts should be, namely
the probabilities 0.1, 0.2, . . . , 0.8, 0.9. Table 1 shows the results.
Column p̂, � gives the sample mean of the indicator function

1
[0,q](�), for each value of q, and the fourth column gives the nu-

merical standard error for p̂. Column p̂, �̃ gives the sample mean
of the indicator function 1

[0,q](�̃), and the sixth column gives the
numerical standard error for p̂.

We chose a very large sample size to obtain tests of correctness
with considerable power against alternatives. Indeed, we see in
Table 1 that the standard errors for p̂ are very small. Even so,
the sample means are all within a single standard error of the
population means, under the null hypothesis that our code works
properly. The results fail to reject this hypothesis.

5.2. Posterior analysis

In Regenwetter et al. (2011)’s experiment, 18 undergraduates
participated in three different scenarios, denoted here and in that
paper by ‘‘Cash I’’, ‘‘Cash II’’ and ‘‘Noncash’’. In each scenario, the
master set contains n = 5 objects, choice sets are pairs of ob-
jects, and the objects are lotteries in which a prize is won with a
certain probability. In ‘‘Cash I’’, the probabilities of winning repli-
cate those from a similar experiment by Tversky (1969), designed
to elicit intransitive revealed preferences. Prizes are monetary val-
ues, adjusted to approximately replicate the purchasing power of
the original prizes in Tversky (1969). In ‘‘Cash II’’, prizes are also
monetary. Probabilities and prizes are chosen so that the expected
monetary values of the five lotteries were identical. In ‘‘Noncash’’,
the prizes are non-monetary. In each scenario, each of 18 partic-
ipants was presented all ten doubleton subsets of the master set
twenty times. Participantswere required to choose exactly one lot-
tery from each choice set.

These data have been subjected to tests of the independent
and identically distributed (i.i.d.) assumption that we and others
have made. Birnbaum (2011) and Birnbaum (2012) criticize this
assumption, and Birnbaum (2012) reports tests of the particular
assumption that repeated choices from the same choice set are
independent and identically distributed. For the third of the data
that they analyse, precisely the same third that we analyse here,
the ‘‘Cash I’’ scenario, they find 6 and 8 rejections, out of 18,
at a nominal 5% level, for two different tests. Cha, Choi, Guo,
Regenwetter, and Zwilling (2013) rebut the criticism, showing
using Monte Carlo simulations that the distribution of Birnbaum
(2012)’s claimed p-values is not uniform and that their distribution
depends on unobserved choice probabilities. They also report that
the hypothesis is not rejected using the test proposed by Smith and
Batchelder (2008), whose size properties are known analytically.

We chose prior hyper-parameters a = 1.2, ã = 0.4, b = b̃ =

0.9375 for the posterior analysis of this section. This corresponds
to modelM7 in Table 5. These choices are explained in Section 5.3,
where we discuss the robustness of results to the choice of prior.
The priormean and standard deviation of↵ are 1.5 and1.186; those
of � are 0.75 and 0.340.

Table 2 reports posterior means and standard deviations, and
the numerical standard error, for the ↵ and � parameters, respec-
tively. Each row shows results for a different participant in the ex-
periment; the first column gives the participant’s identifier.

The posteriormean and standard deviation of↵ varies consider-
ably across participants. For participants 3, 5, 8, 11, 14 and 16, the
posterior mean is less than 1.0 and the posterior standard devia-
tion is less than 0.5, bothmuch lower than their prior counterparts.
These participants behaved quite consistently across repeated pre-
sentations of the same choice pair, and this consistency is compat-
ible only with low values of the ↵ parameter. For participants 1,
9, 12, 13, 15, 17 and 18, the posterior mean of ↵ is greater than
2.0 and the standard deviation is greater than 1.0. These partici-
pants were not very consistent across repeated presentations, for
many choice pairs. Data such as these give evidence against very
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Table 2

Posterior mean, standard deviation and numerical standard error for ↵ and �, by
participant.

E[↵|N] sd[↵|N] NSE↵ E[�|N] sd[�|N] NSE�

1 2.30 1.08 0.010 0.938 0.124 0.0006
2 1.72 0.85 0.012 0.961 0.087 0.0005
3 0.62 0.37 0.004 0.965 0.078 0.0004
4 1.56 0.70 0.007 0.702 0.231 0.0022
5 0.86 0.47 0.006 0.973 0.063 0.0003
6 1.55 0.74 0.010 0.877 0.178 0.0016
7 1.46 0.73 0.009 0.976 0.057 0.0003
8 0.64 0.38 0.005 0.919 0.128 0.0008
9 2.47 1.26 0.011 0.949 0.110 0.0005

10 1.16 0.60 0.009 0.960 0.084 0.0005
11 0.79 0.44 0.006 0.912 0.137 0.0009
12 2.15 1.05 0.013 0.919 0.151 0.0010
13 2.63 1.25 0.011 0.944 0.114 0.0004
14 0.60 0.36 0.003 0.969 0.071 0.0003
15 2.42 1.10 0.009 0.946 0.110 0.0004
16 0.88 0.45 0.008 0.707 0.202 0.0017
17 2.38 1.25 0.015 0.855 0.204 0.0016
18 2.73 1.27 0.008 0.952 0.102 0.0003

small values of ↵, but the large posterior standard deviations indi-
cate that the data only weakly discriminate among greater values.
The five other participants fall somewhere in between.

There is considerable evidence favouring values of � closer to
one over values closer to zero. Except for participants 4 and 16, the
posterior mean is greater than the prior mean. We will see in the
prior robustness analysis below that this evidence is similar to the
evidence given by the Bayes factors in Table 6, in which priors with
higher prior means for � were favoured for most participants. The
support for higher values of � is compelling evidence in favour of
statistical dependence of binary choice probabilities across choice
sets, and more particularly the kind of dependence measured by
the � parameter. Recall that the marginal distributions of choice
probabilities do not depend on �; � only affects the dependence
structure.

Numerical standard errors for ↵ and � are much lower than
the posterior standard deviation. This indicates that uncertainty
about reported posterior means due to MCMC simulation is
considerably lower than the posterior uncertainty that remains
after conditioning on the data. Most numerical standard errors for
↵ are close to 0.01 or less, justifying three significant digits for the
reported mean; those for � are close to 0.002 or less, justifying
three significant digits for the reported mean.

Table 3 gives log Bayes factors in favour of restricted models
over the unrestricted model, by participant. Each column gives
results for a single axiom.

Numerical standard errors for log Bayes factors vary greatly. The
error tends to be larger for themore improbable axioms and for the
smallest (i.e. most negative) log Bayes factors, due to the difficulty
ofmeasuring very small prior or posterior probabilities. In themost
extreme cases, the log Bayes factor is given as ‘‘�Inf’’, indicating
that not a single posterior draw of the random choice structure P ,
out of 8 ⇥ 104, satisfied the relevant axiom. In those cases where
there is a great deal of uncertainty about the log Bayes factor, at
leastwe know that it is very small, and that the data strongly favour
the unrestricted model.

For most participants, weak stochastic transitivity is favoured
over the unrestricted model, but the support is quite weak—the
largest Bayes factor in favour ofWST is exp(0.30) ⇡ 1.34, attained
for participants 2, 3, 5, 7, 8, 10, 11 and 14. For these subjects, the
posterior probability ofWST is very close to one. The reason for the
weak evidence in these cases is that the prior probability of WST
is so large. Since the Bayes factor is the ratio of posterior to prior
probability, the maximum possible Bayes factor is the reciprocal
of the prior probability, achieved when the posterior probability
is exactly equal to one. For participants 4, 6, 12, 13 and 17, there

Table 3

Log Bayes factors in favour of various axioms, by participant.

WST MST SST TI Reg RR MI

1 �0.05 0.31 1.22 0.28 0.14 1.25 1.52
2 0.30 0.93 �0.70 0.29 0.25 1.37 0.11
3 0.30 0.76 0.76 0.19 0.26 1.39 �Inf
4 �3.19 �6.25 �Inf �1.97 �1.98 �0.86 �Inf
5 0.30 0.80 0.44 0.24 0.31 1.43 �Inf
6 �0.40 0.09 1.90 �0.01 �0.25 0.87 1.62
7 0.30 0.21 �0.03 0.28 0.34 1.47 �0.06
8 0.30 1.02 0.90 0.07 �0.15 0.98 �Inf
9 �0.02 �1.57 �2.66 0.28 0.21 1.31 1.28

10 0.30 1.04 0.63 0.26 0.20 1.32 �Inf
11 0.30 1.25 1.83 0.14 �0.16 0.97 �Inf
12 �0.83 �2.08 �3.05 0.15 0.05 1.17 1.56
13 �0.17 0.46 0.82 0.29 0.18 1.28 1.37
14 0.30 0.89 0.65 0.21 0.28 1.41 �0.93
15 0.21 1.41 3.09 0.32 0.17 1.28 1.77
16 0.26 �4.55 �Inf �3.00 �2.88 �1.75 �Inf
17 �1.76 �4.41 �Inf �0.13 �0.28 0.82 2.35
18 0.03 1.00 2.33 0.33 0.22 1.32 1.52

is some evidence against WST. This evidence is quite weak for
participants 6, 12, and 13, somewhat stronger for 17 and fairly
strong for 4. Participants 1, 9 and18haveBayes factors very close to
1, so there is little evidence either way. Reported log Bayes factors
in favour of WST have numerical standard errors less than 0.04.
Excluding participants 4 and 17, they are less than 0.01.

Log Bayes factors in favour of moderate stochastic transitivity
vary considerably. The empirical evidence against MST is strong
for participants 4, 16 and 17. Where the Bayes factors favour MST,
the degree of support is often stronger than for WST. This is pos-
sible because of the relative prior improbability of MST. Of course,
the evidence can turn the other way, and in some cases it does:
the data for participant 16 are quite consistent with WST but not
with MST. Note that weak evidence against WST for participants
6 and 13 becomes weak evidence in favour of MST. This happens
because the posterior probability of MST, while necessarily lower
than the posterior probability of WST, is a larger fraction of its
corresponding prior probability; that is Pr[MST|N]/ Pr[MST] >
Pr[WST|N]/ Pr[WST]. Equivalently, the conditional posterior prob-
ability of MST, given WST, is greater than the conditional prior
probability of MST, given WST. MST is more likely to hold in those
parts of the WST region most compatible with the data. Estimated
log Bayes factors in favour of MST have numerical standard errors
less than 0.4. Excluding participants 4, 16 and 17, they are less than
0.05.

Log Bayes factors in favour of strong stochastic transitivity also
vary, and the evidence against is sometimes very strong. For par-
ticipants 4, 16 and 17, not a single posterior draw satisfies strong
stochastic transitivity. This makes it impossible to measure the log
Bayes factor with any precision, but we do know that it is very
small. There is clearly strong evidence against SST for these three
participants. For other participants, there is moderate evidence in
favour of SST. Excluding participants 4, 16 and 17, estimated log
Bayes factors in favour of SST have numerical standard errors less
than 1.1. Excluding 9 and 12 as well, they are less than 0.3.

As withWST, log Bayes factors in favour of the triangle inequal-
ity are small. Again, weak support is due to the relatively high prior
probability of the axiom. Estimated log Bayes factor in favour of TI
have numerical standard errors less than 0.04. Excluding partici-
pants 4 and 16, they are less than 0.01.

Our results for TI,WST, MST and SST are broadly in linewith the
results of tests reported in Cavagnaro and Davis-Stober (2014) for
the same experimental data. Their Fig. 5 reports 2, 3, 3, and 2 rejec-
tions of WST, MST, SST and TI, respectively, for the same scenario
(Cash I) we analyse, although as we have seen, their uniform prior
over binary choice probabilities is different fromour prior. Their re-
jection rule stipulates a Bayes factor threshold of

p

0.1 in favour of
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Table 4

Four random rankings on the master set {x, y, z}.

x � y � z x � z � y y � x � z y � z � x z � x � y z � y � x

⇧0 1/3 0 0 1/3 1/3 0
⇧1 1/2 0 0 0 0 1/2
⇧2 0 1/2 0 1/2 0 0
⇧3 0 0 1/2 0 1/2 0

Table 5

Prior hyper-parameters and moments of ↵ and �.

a ã b b̃ E[↵] Var[↵] �↵ E[�] Var[�] ��

M0 1.0 0.20 1.3500 3.7500 1.6 2.187 1.479 0.833 0.076 0.275

M1 1.0 0.20 1.2500 1.2500 1.5 1.875 1.369 0.833 0.076 0.275
M2 1.0 0.60 0.9375 0.9375 1.5 1.406 1.186 0.625 0.144 0.380
M3 1.0 1.00 0.7500 0.7500 1.5 1.125 1.061 0.500 0.167 0.408
M4 1.4 0.20 0.9375 0.9375 1.5 1.406 1.186 0.875 0.067 0.259
M5 1.4 0.60 0.7500 0.7500 1.5 1.125 1.061 0.700 0.140 0.374
M6 1.8 0.20 0.7500 0.7500 1.5 1.125 1.061 0.900 0.060 0.245
M7 1.2 0.40 0.9375 0.9375 1.5 1.406 1.186 0.750 0.115 0.340
M8 1.2 0.80 0.7500 0.7500 1.5 1.125 1.061 0.600 0.160 0.400
M9 1.6 0.40 0.7500 0.7500 1.5 1.125 1.061 0.800 0.107 0.327

the restrictedmodel over the baselinemodel. This corresponds to a
threshold for the log Bayes factor of� 1

2 ln 10 ⇡ �1.151: using the
same standard, we reject an axiom for a participant if the appropri-
ate Bayes factor, reported in Table 3, is less than this value. There
are two rejections for WST and TI, in agreement with Cavagnaro
and Davis-Stober (2014). This number is robust to prior specifica-
tion in the sense thatWST and TI are rejected for the same two par-
ticipants, 4 and 17, for all priors considered in the prior robustness
analysis below, and are never rejected for any other participant.
We have five rejections of MST in Table 3, all robust to prior spec-
ification, rather than the three reported in Cavagnaro and Davis-
Stober (2014). However, for two participants, the Bayes factors are
near the threshold. The most pronounced difference in results is
for SST. In Table 3, Bayes factors for five participants are well be-
low the threshold, and this is robust to the prior specification. Pos-
terior probabilities of SST roughly agree with those reported in the
appendix of Cavagnaro and Davis-Stober (2014). The much larger
difference in Bayes factors is attributable to the fact that our prior
assigns a much larger prior probability to SST. In McCausland and
Marley (2013), we showed that the prior probability of SST is quite
sensitive to the value of � for master sets of size four. Although
we did not report it in that paper, this is also true for master sets
of size five. As the degree of statistical dependence – measured by
� – among binary choice probabilities on different (binary) choice
sets increases, the probability of SST increases as well. In the cur-
rent paper, we report results for a prior that reflects the particular
empirical relevance of the regionswhere these priors put high pos-
terior probability density.

We now move on to discuss evidence for or against the axioms
Reg, RR and MI that relate choice probabilities on differently sized
choice sets. Although the experiment involves only binary choices
andwas intended to test axioms on binary choice probabilities, we
can still learn about Reg, RR and MI. This is because truncation
affects the joint distribution of binary and multiple choice
probabilities, even when � = 0 and they are a priori independent.

Results for regularity are similar to those for TI. Reg implies
TI, and the additional truncation reduces prior and posterior
probabilities about equally. Estimated log Bayes factors in favour
of Reg have numerical standard errors less than 0.05. Excluding
participants 4 and 16, they are less than 0.02.

In cases where log Bayes factors favour the random ranking
hypothesis, log Bayes factors givemore support for RR than they do
for TI, a necessary condition for RR. This is possible because of the

former’s lower prior probability. They also give more support for
RR than they do for Reg; the latter is implied by RR and implies TI.
The relative similarity of the results for TI and Reg, compared with
the results for RR, demonstrates the importance of conditions in
Falmagne (1978) other than regularity; imposing these conditions
reduces the prior probability considerably more than the posterior
probability.

Even for participants 4 and 16, where there is evidence against
TI, the Bayes factor in favour of RR is greater than the Bayes factor
in favour of TI.When both are negative, indicating evidence against
the respective axioms, this means that the evidence against RR is
weaker than the evidence against TI. This is possible because the
posterior probability drops less than the prior probability does,
passing from the TI axiom to the RR axiom. Equivalently, the
conditional posterior probability of RR given TI is considerably
higher than the corresponding conditional prior probability. For
these participants, RR is more likely to hold in those parts of the
TI region most compatible with the data.

It might seem paradoxical that the results for TI and RR are
different, since for master sets of size up to five, a set of binary
probabilities is consistent with some random ranking if and only
if the binary probabilities satisfy TI. In Cavagnaro and Davis-Stober
(2014) and Regenwetter et al. (2011), tests of LOP (Linear Order
Polytope for binary probabilities, equivalent to TI for master sets
of size up to five) are taken to be tests of MMTP (Mixture Model
of Transitive Preferences, equivalent to RR). Something that tests
of TI neglect that is relevant to the RR condition is that some
configurations of binary probabilities satisfying TI are consistent
with much larger sets of ranking distributions than others. Take
the following example, for the master set T = {x, y, z}. Table 4
shows four distributions over rankings, ⇧0 through ⇧3. Each row
gives the probabilities that one of these distributions assigns to
each of the six rankings on the master set. Now consider two
different configurations of binary choice probabilities. The first is
given by p(x, y) = p(y, z) = p(z, x) = 2/3, and p(z, y) =

p(y, x) = p(x, z) = 1/3. This set of probabilities satisfies TI, but
since p(z, y) + p(y, x) + p(x, z) � 1 is satisfied with equality,
the configuration of binary probabilities is on the boundary of
the TI region. This configuration is consistent with only one
ranking distribution,⇧0. The second configuration of binary choice
probabilities is given by p(x, y) = p(y, x) = p(y, z) = p(z, y) =

p(z, x) = p(x, z) = 1/2. This configuration is at the centroid of the
TI region, and is compatible with all ranking distributions that are
convex combinations of ⇧1, ⇧2, and ⇧3.
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Table 6

Log Bayes factors in favour of priorsMi, 1, . . . , 9, by participant.

M1 M2 M3 M4 M5 M6 M7 M8 M9

1 �0.04 �0.31 �0.50 0.05 �0.19 0.11 �0.13 �0.34 �0.04
2 0.14 �0.36 �0.72 0.30 �0.14 0.41 �0.02 �0.42 0.14
3 0.26 �0.45 �1.06 0.25 �0.40 0.21 �0.09 �0.72 �0.09
4 �0.18 0.60 0.88 �0.22 0.57 �0.28 0.32 0.76 0.27
5 0.24 �0.51 �1.14 0.33 �0.34 0.38 �0.08 �0.72 0.03
6 0.06 0.28 0.35 0.16 0.38 0.22 0.26 0.38 0.33
7 0.19 �0.55 �1.14 0.37 �0.29 0.49 �0.08 �0.70 0.11
8 0.24 0.06 �0.27 0.20 0.05 0.14 0.17 �0.08 0.13
9 �0.21 �0.63 �0.94 �0.17 �0.55 �0.14 �0.40 �0.75 �0.34

10 0.21 �0.28 �0.69 0.35 �0.07 0.44 0.05 �0.37 0.19
11 0.22 0.15 �0.08 0.24 0.19 0.24 0.24 0.08 0.25
12 �0.15 �0.22 �0.29 �0.07 �0.15 �0.01 �0.14 �0.22 �0.08
13 �0.14 �0.54 �0.83 �0.11 �0.45 �0.09 �0.32 �0.64 �0.27
14 0.26 �0.53 �1.19 0.24 �0.48 0.19 �0.14 �0.82 �0.14
15 �0.01 �0.38 �0.66 0.08 �0.25 0.13 �0.15 �0.45 �0.05
16 0.12 0.79 0.94 0.02 0.75 �0.08 0.55 0.88 0.48
17 �0.86 �0.61 �0.56 �0.93 �0.69 �0.96 �0.73 �0.62 �0.80
18 �0.10 �0.60 �0.97 �0.07 �0.50 �0.06 �0.33 �0.73 �0.28

Another way of thinking about this issue, discussed at length
in McCausland and Marley (2013), is to consider the size of the
set of multiple choice probabilities compatible with both RR and
a given configuration of binary probabilities. Returning to the
same example, if we impose RR, the first configuration is com-
patible with, and only with, the ternary probability (PT (x), PT (y),
PT (z)) = (1/3, 1/3, 1/3); the second is compatiblewith all convex
combinations of the following three ternary choice probabilities:
(1/2, 1/2, 0), (1/2, 0, 1/2), and (0, 1/2, 1/2). The convex hull of
the set of these three points has an area equal to a quarter of the
area of the simplex of all ternary probabilities.

We see through these examples that a uniform prior on the TI
region, whichmight seem appropriately uninformative, is compat-
ible only with priors on the RR region of the full random choice
structure that are highly informative about choice probabilities on
ternary and larger sets. Similarly, the uniformprior on the TI region
is compatible only with priors on the set of ranking distributions
that are far from uniform.

Results for themultiplicative inequality are somewhat unusual,
relative to the other conditions studied here, in that there is com-
pelling evidence against it formore than a third of the participants.
For participants 3, 4, 5, 8, 10, 11 and 16, log Bayes factors in Ta-
ble 3 provide very strong evidence against MI. For other partici-
pants, prior and posterior probabilities are both very low, and the
log Bayes factors are measured with a lot of error: numerical stan-
dard errors for them range from 0.4 to 1.1.

Recall that MI is a necessary condition for an independent ran-
dom utility model, and for EBA, though it can be satisfied by a de-
pendent random utility model. Thus our results represent strong
evidence against independent random utility and EBA, for a large
fraction of the participants in the experiment.

5.3. Prior robustness analysis

We wish to illustrate the sensitivity of our results to the choice
of prior distribution. To this end, we do posterior inference for
nine models, M1 through M9, differing only in terms of the prior
distribution.

Wewill first describe a region of plausible values for the hyper-
parameters a and ã. We obtain the nine models by choosing
nine points within this region. We then illustrate how well the
various models perform, for each participant’s data. We show how
sensitive the posterior distributions of ↵ and � are by reporting
posterior means for the various models. We demonstrate how
sensitive Bayes factors in favour of various axioms are by reporting
their minimal and maximal values across models.

Table 5 defines the priors and gives selected moments. The
first four columns define the various priors in terms of the hyper-
parameters a, ã, b and b̃ of Eq. (2).

We choose the values of a and ã to satisfy the inequalities a+ã 

2 and a � 1. The first inequality ensures that the prior density of
↵ does not have a value and first derivative equal to zero at ↵ = 0.
We do not want to rule out values of ↵ close to zero a priori. Given
the first inequality, the second ensures that E[�] � 1/2. In initial
simulations, not reported here, we found that the posterior mean
of � tends to be higher than 1/2 when the prior mean is equal to
1/2. In the few exceptions, the posterior mean is close to 1/2. So
to keep our reported results relatively concise, we focus on more
empirically relevant priors—we exclude priors where E[�] < 1/2,
which give low Bayes factors. The second inequality also ensures
that the density of ↵ does not become infinite at zero. The set of
nine (a, ã) pairs gives a constellation of points spread out through
the region defined by the above inequalities and the additional
inequality ã > 0 that is required for a parameter of a Gamma
distribution. The prior M7, which gives the only (a, ã) pair in the
interior of the region, is the prior used for the analysis of the
previous section.

We set the values of b and b̃ to be equal and to maintain a mean
value of ↵ equal to 1.5. When b = b̃, the implied prior for ↵ and �
is given by (3), which facilitates interpretation. Setting E[↵] = 1.5
ensures that the event ↵ > 2, implying densities for binary prob-
abilities falling to zero at probabilities equal to zero or one, is not
very probable.

Columns 5–7 of Table 5 give the implied prior mean, variance
and standard deviation of the parameter↵. The final three columns
do the same for the parameter �.

To put this prior in the context of previous research, we draw
attention to the following fact. A degenerate prior for ↵ and � as-
signing probability one to the values ↵ = 2 and � = 0 implies a
marginal distribution for the collection of binary choice probabil-
ities where the non-redundant binary probabilities are indepen-
dent and uniformly distributed on (0, 1). As we have seen, this is
the prior used in the previous studies mentioned above.

We will denote the prior density for model Mi as fi(↵, �), for
i = 0, 1, . . . , 9. The model M0 is used for posterior simulation
and we do not report results for it. Its prior, also tabulated in
Table 5, is chosen for its property that the ratio fi(↵, �)/f0(↵, �)
of prior densities is bounded for all i = 1, . . . , 9. This allows us to
compute all results using a single posterior sample, for model M0:
results for other priors are computed using importance sampling,
as described in Section 4.1.4.

We now discuss inference based on the following simulations.
For each of the 18 participants, we generate a posterior sample of
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Table 7

Posterior mean of ↵, by participant and model.

M1 M2 M3 M4 M5 M6 M7 M8 M9

1 2.61 2.50 2.41 2.43 2.36 2.30 2.47 2.38 2.33
2 1.79 1.77 1.75 1.75 1.73 1.72 1.76 1.74 1.72
3 0.51 0.51 0.52 0.57 0.57 0.62 0.54 0.54 0.60
4 1.60 1.60 1.60 1.58 1.58 1.56 1.59 1.59 1.57
5 0.76 0.78 0.79 0.82 0.83 0.86 0.80 0.81 0.85
6 1.55 1.49 1.47 1.55 1.51 1.55 1.52 1.49 1.53
7 1.45 1.44 1.44 1.45 1.45 1.46 1.45 1.44 1.45
8 0.52 0.49 0.49 0.58 0.56 0.64 0.53 0.52 0.60
9 3.03 2.96 2.87 2.69 2.66 2.47 2.82 2.76 2.56

10 1.09 1.09 1.09 1.13 1.13 1.16 1.11 1.11 1.15
11 0.67 0.63 0.62 0.73 0.69 0.79 0.67 0.65 0.73
12 2.45 2.47 2.44 2.27 2.30 2.15 2.37 2.37 2.23
13 3.17 2.98 2.84 2.85 2.73 2.63 2.91 2.78 2.67
14 0.49 0.50 0.51 0.55 0.56 0.60 0.52 0.53 0.58
15 2.77 2.59 2.46 2.57 2.44 2.42 2.58 2.45 2.43
16 0.76 0.78 0.79 0.83 0.84 0.88 0.80 0.82 0.86
17 3.05 3.07 2.96 2.63 2.70 2.38 2.87 2.83 2.55
18 3.31 3.05 2.87 2.96 2.80 2.73 3.01 2.83 2.76

size 2.4 ⇥ 107, and retain every 300th draw, for a thinned sample
size of 8.0⇥104.We use themodelM0 with prior hyper-parameter
values indicated in Table 5. We complete the specification of the
proposal distribution by choosing the value ⇡ = 0.5.

Table 6 shows log Bayes factors in favour of the models M1
through M9, relative to the model M0. All of these models are un-
constrained, with no axioms imposed. For a given row, differences
of log Bayes factors give log Bayes factors in favour of one model
over another, for a particular participant. Take, for example, the
first row, for participant 1. The log Bayes factor in favour ofM1 over
M2 is �0.04 � �0.31 = 0.27, implying a posterior odds ratio of
exp(0.27) ⇡ 1.310. All numerical standard errors for the entries
in this table are less than 0.015.

For no single participant do these Bayes factors strongly favour
any one of the ninemodels: the greatest difference in log Bayes fac-
tors between themost favoured and the nextmost favouredmodel
is only 0.12. Looking across participants, however, some patterns
emerge. For most participants, models M4 and M6 are the most
favoured—the log Bayes factors in their favour, relative to M0, are
the highest among the models M1 through M9. These models are
the two with the highest prior mean of �. This is strong evidence
in favour of the statistical dependence of the various binary choice
probabilities, for these participants. For participants 4 and 16, M4
andM6 are the least favouredmodels. For them, the Bayes factor in
favour ofM3 is highest, whereas for a majority of participants, it is
the lowest. Model M3 has the lowest prior mean for �. As we have

seen, these two participants are exceptional in many ways. The ta-
ble suggests important participant heterogeneity that can be de-
scribed as clustering. Participants within a cluster are similar, and
participants from two different clusters are not.

Table 7 shows the sensitivity of the posterior mean of ↵ to the
choice of prior.We see that themean variesmuchmore across par-
ticipants than it does across priors. In this sense, the mean is quite
robust to the choice of prior. Table 8 shows the sensitivity of the
posterior mean of �. Relative to ↵, the posterior mean of � is fairly
sensitive to the prior mean. For participants 6 and 17, it is quite
close to the prior mean across models; for participants 4 and 16, it
is consistently smaller; and for all other participants, consistently
larger.

Table 9 shows the sensitivity of log Bayes factors in favour of
various axioms to the choice of prior. For each axiom and partici-
pant, it gives the minimal and maximal log Bayes factors in favour
of the axiom, across the ninemodels. It shows that both favourable
andunfavourable log Bayes factors are fairly robustwithin the class
of priors considered, with some notable exceptions.

One remarkable result is that for participants 4 and 16, the
Bayes factor favours RR for themost favourablemodel, which turns
out to be M3. Recall that this model is the best performing unre-
strictedmodel for these two participants and the worst for most of
the other participants. It is also themodel forwhich the priormean
of �, at 0.5, is the lowest, giving a particularly low prior probability
of RR. Despite this, truncating to the RR region improves the pre-
dictive performance.

For other participants, the evidence for RR is fairly robust across
priors, so that even when the prior distribution puts more mass
on values of � close to one, there is still almost as much of an
improvement in out-of-sample predictive performance resulting
from imposing RR.

5.4. A comparison with previous approaches

We have seen that previous results have been obtained using
priors where choice probabilities in a random choice structure are
independent Dirichlet. This corresponds to the special case of the
prior in McCausland and Marley (2013) where � = 0. Because
the prior is conjugate, the posterior distribution is known and
posterior simulation is straightforward.

In this section, we compare our results with results obtained
using a hierarchical version of an independent Dirichlet prior. We
set � = 0 and choose a prior for ↵ matching the prior used in the
previous section; that is, ↵ ⇠ Ga(1.6, 0.9375). Thus the marginal
distribution of each PA is unchanged, but the PA are now mutually

Table 8

Posterior mean of �, by participant and model.

M1 M2 M3 M4 M5 M6 M7 M8 M9

1 0.909 0.754 0.635 0.926 0.797 0.938 0.844 0.719 0.870
2 0.950 0.845 0.745 0.956 0.866 0.961 0.905 0.809 0.916
3 0.950 0.858 0.777 0.960 0.883 0.965 0.913 0.833 0.927
4 0.586 0.486 0.418 0.655 0.559 0.702 0.567 0.490 0.627
5 0.966 0.896 0.825 0.970 0.908 0.973 0.936 0.869 0.943
6 0.818 0.646 0.543 0.853 0.702 0.877 0.744 0.622 0.784
7 0.972 0.910 0.844 0.974 0.918 0.976 0.944 0.884 0.949
8 0.873 0.755 0.679 0.901 0.799 0.919 0.826 0.741 0.857
9 0.917 0.774 0.660 0.937 0.822 0.949 0.863 0.746 0.890

10 0.950 0.858 0.776 0.955 0.874 0.960 0.908 0.827 0.918
11 0.866 0.739 0.658 0.894 0.783 0.912 0.814 0.722 0.845
12 0.867 0.681 0.557 0.899 0.745 0.919 0.793 0.653 0.834
13 0.917 0.776 0.663 0.934 0.817 0.944 0.860 0.744 0.884
14 0.957 0.871 0.791 0.964 0.893 0.969 0.922 0.847 0.934
15 0.926 0.792 0.680 0.938 0.824 0.946 0.869 0.755 0.888
16 0.617 0.545 0.491 0.670 0.604 0.707 0.608 0.550 0.655
17 0.733 0.556 0.465 0.811 0.648 0.855 0.675 0.556 0.745
18 0.933 0.806 0.696 0.945 0.839 0.952 0.881 0.772 0.899
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Table 9

Minimal and maximal log Bayes factors in favour of various axioms, by participant.

WST MST SST TI Reg RR MI

1 �0.05, 0.43 0.31, 1.01 0.47, 1.90 0.28, 1.30 0.14, 0.68 1.25, 1.91 �1.69, 1.52
2 0.30, 0.97 0.93, 1.91 �1.53, 0.68 0.29, 1.33 0.25, 1.27 1.37, 2.46 �3.65, 0.28
3 0.30, 0.98 0.76, 1.75 �0.13, 1.55 0.19, 0.87 0.26, 1.34 1.39, 2.56 �Inf, �Inf
4 �4.00, �3.19 �7.85, �6.25 �Inf, �Inf �2.78, �1.97 �3.33, �1.98 �1.75, 1.34 �Inf, �Inf
5 0.30, 0.98 0.80, 1.79 �0.49, 1.29 0.24, 1.09 0.31, 1.64 1.43, 2.80 �Inf, �Inf
6 �0.42, �0.24 0.08, 0.31 1.01, 2.45 �0.01, 0.54 �0.49, �0.21 0.65, 1.21 �2.19, 1.62
7 0.30, 0.98 0.21, 1.15 �0.85, 1.51 0.28, 1.29 0.34, 1.85 1.47, 2.96 �6.85, �0.06
8 0.30, 0.98 1.02, 1.86 0.07, 1.86 0.07, 0.64 �0.19, 0.10 0.95, 1.86 �Inf, �Inf
9 �0.02, 0.39 �1.57, �1.20 �3.66, �2.64 0.28, 1.28 0.13, 0.96 1.19, 2.09 �1.28, 1.28

10 0.30, 0.98 1.04, 2.13 �0.27, 1.78 0.26, 1.22 0.20, 1.16 1.32, 2.39 �Inf, �Inf
11 0.30, 0.98 1.25, 2.31 1.08, 3.29 0.14, 0.93 �0.22, �0.01 0.91, 1.72 �Inf, �Inf
12 �0.83, �0.78 �2.08, �1.79 �12.08, �3.05 0.15, 0.73 �0.04, 0.24 1.04, 1.57 �1.74, 1.81
13 �0.17, 0.28 0.46, 1.21 0.10, 1.34 0.29, 1.36 0.18, 0.89 1.25, 1.95 �1.64, 1.37
14 0.30, 0.98 0.89, 1.85 �0.19, 1.48 0.21, 0.91 0.28, 1.47 1.41, 2.81 �2.50, �0.57
15 0.21, 0.84 1.41, 2.37 2.31, 4.24 0.32, 1.49 0.17, 0.92 1.28, 1.96 �2.12, 2.05
16 0.26, 0.93 �6.07, �4.55 �Inf, �Inf �5.03, �3.00 �4.08, �2.88 �2.42, 1.50 �Inf, �Inf
17 �2.47, �1.76 �5.26, �4.41 �Inf, �Inf �0.41, 0.06 �1.25, �0.28 �0.18, 0.92 �2.27, 2.35
18 0.03, 0.62 1.00, 1.92 1.54, 3.10 0.33, 1.51 0.22, 1.14 1.32, 2.16 �0.90, 1.91

independent across choice sets A. We only report results for binary
choice axioms, since the prior and posterior probabilities required
to compute Bayes factors for the non-binary axioms are much too
low: in the posterior samples used to generate the results reported
here, not a single prior draw out of 8⇥104 satisfied any of the other
axioms.

For each participant, we generated a Markov chain of size 8 ⇥

105 from the posterior distribution of ↵ and retained every 10th
draw. We used an independence Metropolis–Hastings chain, with
the prior distribution of ↵ as a proposal distribution. Since the
conditional choice probabilities given ↵ –with the gammaweights
integrated out – is available in closed form, the Hastings ratio is
easily computed.

For each retained draw, we draw P from its conditional poste-
rior distribution given↵, which is also available in closed form, due
to conjugacy, and then check to see which of the binary choice ax-
ioms hold. The proportion of draws in the posterior sample where
an axiom holds is a simulation consistent approximation of the
posterior probability of the axiom.

Table 10 shows the simulation results. The first three columns
show the posterior mean and standard deviation of ↵, and the
numerical standard error for the posterior mean. The next four
columns show the log Bayes factors in favour of the various axioms
for binary choice probabilities.

Recall that for participants 3, 5, 8, 11, 14 and 16, the posterior
mean and standard deviation of ↵ were relatively low, using our
prior. For these participants, they are even lower under the inde-
pendentDirichlet prior, and considerably so. For other participants,
the posterior moments of ↵ changemuch less. Numerical standard
errors are much smaller, as there is hardly any serial dependence
in the chain.

The Bayes factors in favour of the binary choice axioms change
considerably, mostly in their favour, due to their relatively small
probability under the independent Dirichlet prior.

6. Conclusions

We have introduced new posterior simulation methods allow-
ing more flexible inference for random choice structures. Previ-
ous articles had specified prior distributions over the set of binary
choice probabilities in which the probabilities were mutually in-
dependent, each with a Beta distribution. Such priors are a con-
venient choice, since they are fully conjugate for the likelihood
function for choices that are independent across choice sets and
trials. However, ruling out prior dependence is quite restrictive.

Table 10

Results for independent Dirichlet prior.

E[↵|N] sd[↵|N] NSE↵ WST MST SST TI

1 2.53 1.08 4.6e�03 2.69 1.30 2.28 3.53
2 1.67 0.72 2.6e�03 2.66 2.14 3.65 3.09
3 0.25 0.15 8.6e�04 1.35 2.16 3.40 4.80
4 1.69 0.72 2.4e�03 �2.19 �3.57 �Inf �Inf
5 0.52 0.24 1.1e�03 1.92 2.16 3.59 3.04
6 1.37 0.61 2.2e�03 1.71 0.53 1.45 4.69
7 1.30 0.52 1.8e�03 2.19 2.15 2.86 4.11
8 0.26 0.15 9.3e�04 1.39 2.16 3.46 4.82
9 3.49 1.46 1.0e�02 2.51 1.11 �0.36 �Inf

10 0.80 0.35 1.4e�03 2.44 2.16 4.12 3.76
11 0.35 0.19 9.4e�04 2.06 2.16 4.13 6.14
12 2.68 1.15 4.8e�03 1.70 �0.31 �1.04 �Inf
13 3.13 1.32 6.9e�03 2.74 1.08 2.49 2.30
14 0.25 0.15 8.4e�04 1.53 2.16 3.59 4.41
15 2.45 1.05 4.2e�03 3.04 1.94 4.07 6.50
16 0.60 0.29 1.3e�03 �Inf 2.09 �Inf �Inf
17 3.42 1.44 9.4e�03 0.79 �2.31 �6.02 �Inf
18 3.09 1.29 6.5e�03 3.07 1.63 3.49 5.32

Our methods work for the two-parameter class of prior distribu-
tions introduced in McCausland and Marley (2013). The ↵ param-
eter governs consistency of choice from trial to trial and � governs
dependence of choice probabilities across choice sets.

We have shown that formost participants in the experimentwe
studied, there is strong evidence for dependence across choice sets.
The data are quite informative about the degree of dependence, as
measured by �, and the region of high posterior probability density
is far removed from the value � = 0 that corresponds to the priors
used in previous research. The flexibility we have introduced is
abundantly supported by the data we studied.

Certain broad inferences are fairly robust to the choice of prior
distribution, within the set of prior distributions we consider in
our prior sensitivity analysis. For all but two participants, there
is weak evidence for weak stochastic transitivity and the triangle
inequality. Bayes factors for axioms with lower prior probability
varymuchmore across individuals.MST and SST are favouredmore
strongly thanWST for most participants, but for a sizable minority
of participants there is strong evidence against them.

While prior and posterior probabilities for regularity, random
ranking and the multiplicative inequality are too low to measure
easily under the independent Dirichlet prior, they are large enough
using our hierarchical prior. This is because allowing dependence
across choice probabilities increases the prior and posterior prob-
abilities of these axioms.

Overall, there is more support for the RR hypothesis than there
is for the triangle inequality, a necessary condition for the former.
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This paradox is resolved by noting that the Bayes factor depends
on both the prior and posterior probabilities of an axiom in the
unrestricted model. Replacing a weaker axiomwith a stronger one
can lower the prior probability by a larger multiple than it lowers
the posterior probability, in which case the Bayes factor provides
more support for the stronger axiom than it does for the weaker.
The RR hypothesis jointly constrains all choice distributions in a
random choice structure, not just the binary choice probabilities.
The additional constraints make the prior probability of RR much
lower than that of TI. In future work we plan to follow through on
a recommendation we made in McCausland and Marley (2013), to
collect data for all subsets of size two and larger of a master set, for
the purpose of directly testing RR.

Across participants, Bayes factors in favour of regularity are
more similar to those for TI than to those for RR. This suggests that
the conditions in Falmagne (1978) other than Reg are at the same
time strong, in the sense of low prior probability, and supported
by these data. In future empirical research applying our methods
to many different data sets, we hope to use data from experiments
where some choice sets are subsets of others, including data from
the literature on context effects.

Evidence against the multiplicative inequality is very strong for
more than a third of participants. Given that MI is a necessary
condition for EBA and independent random utility, this constitutes
compelling evidence against these models for these individuals.
None of the MI conditions involve only binary choice probabilities,
so it is not obvious why this is so—the MI conditions and the prior
interact in ways that are not transparent to us. We hope to shed
more light on this issue using data for different sized subsets of the
master set.
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Appendix A. Markov chain Monte Carlo details

A.1. Transition densities

We define some proposal distributions we use in our Metropo-
lis–Hastings updates. The first is the Beta–Gamma transformation
introduced in Lewis, McKenzie, and Hugus (1986). Suppose we
transform a random variable x to create x⇤

= �x + ✏, where x,
� and ✏ are mutually independent, � ⇠ Be(⇡a, (1 � ⇡)), ✏ ⇠

Ga((1 � ⇡)a). Here, ⇡ 2 (0, 1) and a > 0 are parameters. The
unique invariant distribution of this transformation is ↵ ⇠ Ga(a).
We denote the transition density as q1(x⇤

|x, a, ⇡). The Markov
chainwith this transition density is known as the Beta–Gamma au-
toregressive process. Importantly, Lewis et al. (1986) show that it
is time reversible, which implies that

fGa(↵|a)q1(↵⇤

|↵, a, ⇡) = fGa(↵⇤

|a)q1(↵|↵⇤, a, ⇡). (A.1)

We will never need to evaluate q1(·, ·) but we will need to invoke
the time reversibility condition (A.1) to demonstrate the correct-
ness of our Metropolis–Hastings updates.

We now derive the transition density q2(y⇤
|y, x, x⇤) for a

conditional transformation from y to y⇤ given x and x⇤, where x > 0
and x⇤ > 0, x 6= x⇤, are parameters. The transformation is defined

as follows. If x⇤ > x, then y⇤
= y + ✏, where ✏ and (y, x, x⇤) are

independent and ✏ ⇠ Ga(x⇤
� x). If x⇤ < x, then y⇤

= �y, where
� ⇠ Be(x⇤, x � x⇤).

The conditional density associated with the conditional transi-
tion from y to y⇤ given x and x⇤ is

q2(y⇤

|y, x, x⇤) =

8
<

:

fGa(y⇤

� y|x⇤

� x) x⇤ > x,
1
y
fBe
✓
y⇤

y
|x⇤, x � x⇤

◆
x > x⇤,

where fGa denotes the standard Gamma density,

fGa(y|x) =

yx�1

� (x)
, x > 0, y > 0,

and fBe denotes the Beta density,

fBe(y|x1, x2) =

� (x1 + x2)
� (x1)� (x2)

yx1�1(1 � y)x2�1,

x1, x2 > 0, y 2 (0, 1).
We now show an important result:

fGa(y|x)q(y⇤

|y, x, x⇤) = fGa(y⇤

|x⇤)q(y|y⇤, x⇤, x). (A.2)

Proof. Write out the left hand side of (A.2) as

fGa(y|x)q(y⇤

|y, x, x⇤)

=

yx�1

� (x)

"

u(x⇤

� x)
(y⇤

� y)x⇤�x�1

� (x⇤
� x)

+ u(x � x⇤)
1
y

⇥

� (x)
� (x⇤)� (x � x⇤)

✓
y⇤

y

◆x⇤�1 ✓y � y⇤

y

◆x�x⇤�1
#

= u(x⇤

� x)
yx�1(y⇤

� y)x⇤�x�1

� (x)� (x⇤
� x)

+ u(x � x⇤)
(y⇤)x

⇤
�1(y � y⇤)x�x⇤�1

� (x⇤)� (x � x⇤)
,

where u(·) is the Heaviside, or unit step function, equal to one for
non-negative arguments and zero for negative arguments.

The last line has the symmetry property that replacing (x, y) by
(x⇤, y⇤) gives the same expression. The left hand side must have
the same property, which is the desired result.

A.2. Hastings ratios

Writing out the full Hastings ratio for the first Metropolis–
Hastings update gives

H =

f (↵⇤)
Q

� 2R(T )

fGa(� ⇤(�)|↵⇤/n!) Pr[N|� ⇤
]

f (↵)
Q

� 2R(T )

fGa(� (�)|↵/n!) Pr[N|� ]

·

q1(↵|↵⇤)
Q

� 2R(T )

q2(� (�)|� ⇤(�), ↵⇤/n!, ↵/n!)

q1(↵⇤
|↵)

Q
� 2R(T )

q2(� ⇤(�)|� (�), ↵/n!, ↵⇤/n!)
,

where � ⇤ is understood to mean the vector � of all weights, with
the � (�) weights replaced by � ⇤(�), � 2 R.

Using Eq. (A.1) and repeated applications of Eq. (A.2), the
Hastings ratio reduces to

H =

Pr[N|� ⇤
]

Pr[N|� ]

.

Therefore the first Metropolis–Hastings update is a true Metropo-
lis–Hastings update preserving the conditional distribution of �

and � (�), � 2 R(T ), given �̃, other latent variables, and data N .
The analogous demonstration for the second Metropolis–Hastings
update is very similar and we omit it.
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