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a b s t r a c t

We study various axioms of discrete probabilistic choice, measuring how restrictive they are, both alone
and in the presence of other axioms, given a specific class of prior distributions over a complete collection
of finite choice probabilities. We do this by using Monte Carlo simulation to compute, for a range of prior
distributions, probabilities that various simple and compoundaxiomshold. For example, the probability of
the triangle inequality is usually many orders of magnitude higher than the probability of random utility.
While neither the triangle inequality nor weak stochastic transitivity imply the other, the conditional
probability that one holds given the other holds is greater than the marginal probability, for all priors in
the class we consider. The reciprocal of the prior probability that an axiom holds is an upper bound on
the Bayes factor in favor of a restricted model, in which the axiom holds, against an unrestricted model.
The relatively high prior probability of the triangle inequality limits the degree of support that data from
a single decisionmaker can provide in its favor. Themuch lower probability of random utility implies that
the Bayes factor in favor of it can be much higher, for suitable data.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Setting

Standardmodels for discrete choice specify choice probabilities
PA(x), the probability of choosing a single option x from a set of
available options A, for all x ∈ A ⊆ T , where T is a finite master set
(or universe) of objects. We will assume for the sake of definite-
ness that these choice probabilities describe the choice behavior
of a single agent; alternatively we could interpret them as choice
probabilities of agents drawn at random from some population. An
agent’s choices are supposed to be statistically independent across
choice situations—thus the probability of choosing x from A and
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then y from B is PA(x)PB(y). We call the complete specification of
the PA(x), for all non-empty A ⊆ T and all x ∈ A, a random choice
structure and denote it (T , P). This framework assumes that the
agent is required to select exactly one of the available options from
each presented choice set; however, one can also consider an ex-
perimental design where the agent has the additional option to se-
lect none of the available options, as in Corbin and Marley (1974);
or, in the case of two options, to state indifference between the op-
tions, as in Davis-Stober (2012) and Regenwetter and Davis-Stober
(2008).

Various axioms, conditions, properties and hypotheses about
probabilistic choice behavior can be expressed as restrictions over
the various choice probabilities. This is true of seven axiomswe ex-
plicitly study in this paper: weak, moderate and strong stochastic
transitivity, the triangle inequality, the multiplicative inequality,
regularity and the random ranking hypothesis. The random rank-
ing hypothesis is particularly important; it is equivalent to what is
commonly known in Economics and Marketing as random utility,
and is widely used there—see Appendix A for a discussion.

http://dx.doi.org/10.1016/j.jmp.2013.05.001
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1.2. Empirical testing

Over the years, there have been attempts to test whether or
not specific behavioral properties hold in discrete choice data, the
most famous being Tversky’s (1969) study of (weak stochastic)
transitivity. Frequentist approaches to the analysis of such data
are challenging, due to the difficulty of deriving sampling distri-
butions when the parameter space is truncated. Iverson and Fal-
magne (1985) is one early attempt to deal with the relevant issues.
Very recently, much more satisfactory frequentist tools have been
developed, which, in combination with relevant results on poly-
topes, give better statistical analyses for old and new data—see Re-
genwetter, Dana, and Davis-Stober (2011). These analyses strongly
suggest that Tversky’s original rejection of weak stochastic transi-
tivity was premature; see Birnbaum (2011) for a discussion of the
application of his pattern model to similar data and Regenwetter,
Dana, Davis-Stober, and Guo’s (2011) response to that approach.

Works describing Bayesian tests of various axioms for bi-
nary choice probabilities include Myung, Karabatsos, and Iverson
(2005), some of the articles cited there, Cavagnaro and Davis-
Stober (2013) and Zwilling, Cavagnaro, and Regenwetter (2011).
These involve priors over binary choice probabilities. The prior we
develop in this paper is a joint distribution of choice probabilities
on all non-empty subsets of a finite master set, not just the dou-
bletons. We will argue in the conclusions that this is desirable for
tests of the random ranking hypothesis, even when the available
data consist only of binary choice data.

1.3. Bayesian inference

Weoutline some standard concepts in Bayesian theory that will
be useful in this paper. For further reading, see Berger (1985) and
Bernardo and Smith (1994) and the references therein.

Bayesian methods are quite attractive in situations where we
want to impose or test inequality restrictions on parameters or la-
tent variables. We can easily impose these restrictions by truncat-
ing the prior distribution of parameters or the distribution of latent
variables—direct application of Bayes’ rule implies that the poste-
rior for the restricted model is simply the truncation of the poste-
rior for the unrestricted model to the same region.

Bayesian inference requires the full specification of the joint
distribution of data (denoted y) and any unknown quantities of
the model. The distinction between unknown parameters θ ∈ Θ

and latent variables γ ∈ Γ is not important in Bayesian theory,
but may be useful for expositional reasons. We usually express the
complete model as f (θ, γ , y) = f (θ)f (γ |θ)f (y|θ, γ ), where f (θ)
is the prior density for parameters, f (γ |θ) describes the latent part
of a model and the data density f (y|θ, γ ) describes observables.

We can also treat uncertainty about models in the same way
as uncertainty about any other unknowns. Suppose we have two
competingmodelsM1 andM2. The firstmodel gives f (θ1, γ1, y|M1)
and the second gives f (θ2, γ2, y|M2). The posterior probabilities of
the twomodels give their relative degrees of plausibility in the light
of the data. The ratio of the two probabilities, the posterior odds
ratio, is given by Bayes’ rule as

Pr[M1|y]
Pr[M2|y]

=
Pr[M1]

Pr[M2]
·
f (y|M1)

f (y|M2)
.

The first ratio on the right hand side is the prior odds ratio. The sec-
ond, denoted B12, is the Bayes factor in favor of M1 over M2. Evalu-
ated for the same given observed data y, f (y|M1) and f (y|M2) are
themarginal likelihoods for the twomodels, andwe canwrite them
as

f (y|Mi) ≡


f (y|θi, γi,Mi)f (θi|Mi)f (γi|θi,Mi) dθi dγi, i = 1, 2.
While for given data y, the likelihoods f (y|M1, θ1) and f (y|M2,
θ2) are functions of the unknown parameters, the marginal likeli-
hoods are known numbers. We can think of the maximum like-
lihood values maxθ1∈Θ1 f (y|M1, θ1) and maxθ2∈Θ2 f (y|M2, θ2) as
measures of in-sample fit — they show how well the model pre-
dicts the data for parameters that we choose after observing the
data. The marginal likelihoods, which make no reference to un-
known quantities, are measures of out-of-sample fit — they aver-
age the likelihood over the prior, with the prior chosen before we
observe data. The Bayes factor, then, compares the out-of-sample
prediction records of the two models to measure the relative sup-
port that the data giveM1 compared withM2.

We plan to investigate how restrictive axioms are — alone and
in the presence of other axioms. This exercise relates to Bayes fac-
tors. Suppose wewant to see how plausible an axiom is in the light
of the data. We have an unrestrictedmodelM2 for choice probabil-
ities, with parameters θ ∈ Θ and latent variables γ ∈ Γ . Suppose
further that a behavioral axiom can be expressed as a restriction
on the space Γ of latent variables — choice probabilities satisfy the
axiom for all γ ∈ Γr ⊆ Γ and violate the axiom for all γ ∈ Γ c

r ,
whereΓ c

r is the complement ofΓr inΓ . Also suppose that the prior
probability of the restriction holding in the unrestricted model is
strictly positive. This will be the case for all the axiomswe consider
in this paper.

We can compare the unrestrictedmodelwith a restrictedmodel
M1, which differs fromM2 in one respect: f (γ |θ,M1) is the normal-
ized truncation of f (γ |θ,M2) to Γr . That is,

f (γ |θ,M1) =


f (γ |θ,M2)

Γr
f (γ ′|θ,M2) dγ ′

γ ∈ Γr

0 otherwise.

For this special case, a simple application of Bayes’ rule gives the
Bayes factor as

B12 =
f (y|γ ∈ Γr ,M2]

f (y|M2)
=

Pr[γ ∈ Γr |y,M2]

Pr[γ ∈ Γr |M2]
. (1)

The right hand side of the second equality is the ratio of the pos-
terior to prior probability that the restriction holds in the un-
restricted model. The Bayes factor ‘rewards’ an axiom for being
consistent with data, but also for making the restricted model
‘small’, ‘simple’ or ‘parsimonious’, as measured by the axiom’s low
prior probability. The prior probability of a restriction gives an up-
per bound on the Bayes factor in favor of the restricted model—it
can be no higher than Pr[γ ∈ Γr |M2]

−1, no matter howmuch data
we collect, since the posterior probability Pr[γ ∈ Γr |y,M2] can be
no higher than 1.

As a practical matter, the computation of marginal likelihoods
is often difficult. Bos (2002) describes and compares several
approaches used in the literature, documenting some of these
difficulties. Analytic integration is usually out of the question, and
for generic simulation approaches it is difficult to obtain numerical
standard errors that are small enough to be practical.

Approximating the Bayes factor in (1), however, is relatively
easy, partly because the prior and posterior probabilities of axioms
can be estimated in simulations as samplemeans of indicator func-
tions, which are bounded. In the present paper, we compute prior
probabilities of the form Pr[γ ∈ Γr |M2] – the numerator in (1) –
using independence Monte Carlo. We have no occasion in this pa-
per to compute Bayes factors. In McCausland and Marley (2013),
we address the practical problem of computing the denominator
Pr[γ ∈ Γr |y,M2]. There, too, we use Monte Carlo, but since we
know of no method for making independent draws from the pos-
terior, we resort to Markov chain Monte Carlo (MCMC) methods.
There is a very large literature on MCMC; popular texts include
Gilks, Richardson, and Spiegelhalter (1996) and Robert and Casella
(2010).
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1.4. Outline of paper

In Section 2, we define a finite random choice structure, a flex-
ible non-parametric framework for probabilistic discrete choice
behavior over all non-empty subsets of a finite set T . We discuss
several axioms in the literature governing random choice and il-
lustrate some of the logical relations among them. In Section 3, we
set up a probabilistic framework allowing us to measure how re-
strictive various simple and composite axioms are. This framework
takes the form of a family of prior distributions over the set of ran-
dom choice structures. We demonstrate several attractive features
of the prior. In Section 4, we show the results of prior simulation
exercises. Given a particular prior, we measure how restrictive an
axiom is by the implied prior (im)probability of the axiom holding.
In Section 5 we conclude and discuss extensions. As already noted,
we focus on the random ranking hypothesis as an important exam-
ple, but the techniques apply broadly, to various hypotheses and
axioms, either extant or yet to be proposed.

2. Random choice: definitions, axioms and theorems

We first introduce some preliminary definitions. We will often
refer to a finitemaster set T ≡ {x1, . . . , xn} of n choice objects. The
order x1, . . . , xn is arbitrary, butwill be useful to establish notation.

A finite random choice structure is a pair (T , P), where T is a finite
set and the collection PA: T → [0, 1], ∅ ≠ A ⊆ T , satisfies

(1)


x∈A PA(x) = 1 for any non-empty A ⊆ T .
(2) PA(x) = 0 for any A ⊆ T , x ∉ A.

We interpret PA(x) as the probability that an agent chooses object
x when presented with choice set A, and suppose that choices
are statistically independent across choice situations. For distinct
x, y ∈ T , we use the standard shorthand notation p(x, y) to mean
P{x,y}(x).

For a given random choice structure (T , P) and non-empty T ′
⊆

T , we define (T ′, P ′), the restriction of (T , P) to T ′, as the random
choice structure on T ′ such that for all A ⊆ T ′, PA(·) = P ′

A(·).
It will be helpful to represent random choice structures on the

tripleton master set T = {x, y, z} graphically. Fig. 1 gives, as an
example, a representation of the random choice structure (T , P)
consisting of the binary probabilities p(x, y) = 0.4, p(y, x) = 0.6,
p(y, z) = 0.8, p(z, y) = 0.2, p(x, z) = 0.7 and p(z, x) = 0.3; and
the ternary probabilities PT (x) = 0.4, PT (y) = 0.2 and PT (z) = 0.4.

The triangle with vertices x, y and z is equilateral. The figure
represents (T , P) by four points in the Barycentric coordinate sys-
tem with respect to x, y and z. There is one point for each of the
non-singleton choice sets. The vertices x, y and z have Barycentric
coordinates (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively. We can
also give Euclidean coordinates—taking the midpoint of the trian-
gle’s base as the origin and the height of the triangle as one unit, the
Euclidean coordinates of the vertices x, y and z are (0, 1), (− 1

√
3
, 0)

and ( 1
√
3
, 0).

The solid dot in the interior of the triangle represents the vector
(PT (x), PT (y), PT (z)) = (0.4, 0.2, 0.4) of ternary probabilities. The
point is a convex combination of x, y and z – in both Euclidean and
Barycentric spaces –withweights 0.4, 0.2 and 0.4, respectively. The
point is a Euclidean distance PT (x) = 0.4 from the base of the trian-
gle, PT (z) = 0.4 from the left side and PT (y) = 0.2 from the right.
By this convention, the vertices x, y and z represent the degenerate
distributions on T where objects x, y and z are chosen with proba-
bility one, respectively, from the choice set T .

The hollow dots on the left, right and bottom sides of the trian-
gle represent the binary probabilities p(x, y) = 0.4, p(x, z) = 0.7
and p(y, z) = 0.8, respectively. For example, the dot on the left
Fig. 1. Graphical illustration of a random choice structure on T = {x, y, z}.

side of the triangle is the convex combination of the vertices la-
beled x and y, with weights p(x, y) = 0.4 and p(y, x) = 0.6 respec-
tively. Throughout, we reserve hollow dots for binary probabilities
and solid dots for ternary probabilities, to avoid any ambiguity for
points on the boundary of the triangle.

We now define random rankings and consider the question of
whether a given random choice structure (T , P) can be induced by
some distribution over rankings.

For a given set T = {x1, . . . , xn}, let R(T ) be the set of rankings
(strict linear orders) on T . For notational convenience and without
loss of generality, we write R(T ) = {≻1, . . . ,≻n!}, with rankings
in the lexicographic order where xn changes position first and x1
changes position last. For any ranking≻ ∈ R and non-empty subset
A ⊆ T , let h≻(A) be the highest ≻-ranked object in A.

A ranking distribution is a pair (T , Π), where the master set T is
finite and Π is a probability mass function on R(T ). Thus Π(≻) is
the probability that ranking ≻ obtains. For a given ranking distri-
bution (T , Π) and non-empty subset T ′

⊆ T , we define (T ′, Π ′),
themarginalization of (T , Π) to T ′, as the ranking distribution that
assigns probability to a ranking ≻

′ on T ′ equal to the probability
Π assigns to the set of rankings on T consistent with ≻

′. That is,
(T ′, Π ′) is the marginalization of (T , Π) to T ′ if for all ≻′

∈ R(T ′),

Π ′(≻′) =


{≻∈R(T ):∀x,y∈T ′,x≻y⇒x≻′ y}

Π(≻).

For any ranking distribution (T , Π), we define (T , PΠ ) as the
random choice structure such that for all non-empty A ⊆ T , and
all x ∈ A,

PΠ
A (x) =


{≻∈R(T ):h≻(A)=x}

Π(≻).

We say that a ranking distribution (T , Π) induces a random choice
structure (T , P) if P = PΠ .

2.1. Axioms for finite random choice structures

Numerous axioms (behavioral restrictions) have been proposed
to constrain choice probabilities or to illustrate properties of
other axioms through their logical relationships. We consider the
following list of axioms.

The random choice structure (T , P) satisfies

TI: the triangle inequality if and only if for all distinct x, y, and z,

p(x, y) + p(y, z) + p(z, x) ≥ 1,

Reg: regularity if and only if for all A, B ⊆ T and for all x ∈ A,

PA(x) ≥ PA∪B(x)

RR: the random ranking hypothesis if there is some ranking
distribution (T , Π) that induces it.
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Fig. 2. Weak, moderate and strong stochastic transitivity and the triangle inequality. Both graphs indicate the sets of (p(x, y), p(y, z)) pairs that are consistent with various
axioms, for a particular fixed value of p(x, z) greater than 1/2. In the left graph, there are four regions: white indicates the regionwhere none ofWST,MST or SST are satisfied;
light grey, the region where only WST is satisfied; medium grey, the region where only WST and MST are satisfied and dark grey where all versions of stochastic transitivity
are satisfied. In the right graph, the region where WST is satisfied is shown in light grey; the region where TI is satisfied is hatched.
WST: weak stochastic transitivity if and only if for all distinct x,
y, and z,

p(x, y) ≥
1
2

and p(y, z) ≥
1
2

⇒ p(x, z) ≥
1
2
,

MST:moderate stochastic transitivity if and only if for all distinct
x, y, and z,

p(x, y) ≥
1
2

and p(y, z) ≥
1
2

⇒ p(x, z) ≥ min[p(x, y), p(y, z)],

SST: strong stochastic transitivity if and only if for all distinct x,
y, and z,

p(x, y) ≥
1
2

and p(y, z) ≥
1
2

⇒ p(x, z) ≥ max[p(x, y), p(y, z)],

MI: the multiplicative inequality if and only if for all A, B ⊆ T
and all x ∈ A ∩ B,

PA∪B(x) ≥ PA(x) · PB(x).

For MI, see Colonius (1983), Sattath and Tversky (1976) and
Suck (2002). For the remaining conditions, see Luce and Suppes
(1965).MI involves choice sets of different sizes; themultiplication
condition in Luce and Suppes (1965) is a different axiom, involving
only binary choice probabilities.

2.2. Known theorems for random choice

The following diagram illustrates the logical relationship be-
tween these axioms. The presence of a directed arrow from one
axiom to another means that the first implies the second. The ab-
sence of a directed arrow means that there is no such implication.

SST ⇒ MST ⇒ WST
u

RR ⇒ Reg ⇒ TI

MI

So, for example, regularity is necessary but not sufficient for the
random ranking hypothesis. Neither the triangle inequality nor
weak stochastic transitivity imply the other.

The diagram gives an exhaustive list of theorems for these
axioms, in the sense that the various axioms can be satisfied or
not in any combination not ruled out by these logical implications.
We know this because in the simulations reported below, every
such combination occurred. We can think of these occurrences as
counterexamples to other candidate theorems for the axioms. So
for example, we know the candidate theorem

Reg and not MI ⇒ MST

is not true becausewe generated counterexamples, random choice
structures where Reg holds andMI andMST do not. Not all of these
counterexamples were previously explicitly known.

The implications SST ⇒ MST ⇒ WST are obvious from the
definitions of these axioms. The implication MST ⇒ TI becomes
obvious when we write the MST and TI conditions as in Appen-
dices C.3.1 and C.3.2. Fig. 2 graphically illustrates the constraints
on binary probabilities implied by WST, MST, SST and TI. Points in
various regions constitute counterexamples for all other candidate
theorems involving WST, MST, SST and TI, such as WST ⇒ MST.

Fig. 3 illustrates the relationship between binary choice proba-
bilities, TI and Reg. In the left panel, the three binary choice prob-
abilities p(x, y) = 0.6, p(z, x) = 0.7 and p(y, z) = 0.65 are fixed.
Upward sloped hatching indicates the region where the ternary
probability vector (PT (x), PT (y), PT (z)) is consistent with two nec-
essary conditions for regularity implied by p(x, y) = 0.6: PT (x) ≤

p(x, y) = 0.6 and PT (y) ≤ p(y, x) = 0.4. Downward sloped
hatching indicates the region where ternary probabilities are con-
sistentwith regularity and the fixed value p(z, x) = 0.7; horizontal
hatching, the region consistent with regularity and p(y, z) = 0.65.
Cross-hatching indicates that two pairs of necessary conditions for
regularity hold. The black triangle is the intersection of the three
regions, the region where all conditions for regularity are satisfied.

In the left panel, the binary probabilities exhibit a cycle, in the
sense that WST is violated — we have p(x, y) > 0.5, p(y, z) > 0.5
and p(z, x) > 0.5. However, TI is satisfied, since p(x, y)+p(y, z)+

p(z, x) = 1.95 ≥ 1 and p(z, y) + p(y, x) + p(x, z) = 1.05 ≥ 1.
Ternary probabilities outside the black triangle give counterexam-
ples to TI ⇒ Reg. But Reg is not ruled out — the ternary proba-
bilities in the black triangle are consistent with Reg and the given
binary probabilities.

When TI is satisfied in this example, we will call the minimum
of p(x, y) + p(y, z) + p(z, x) − 1 and p(z, y) + p(y, x) + p(x, z) − 1
the amount of slack. Now imagine the gradual increase of one or
more of the probabilities p(x, y), p(y, z) and p(z, x). The amount
of slack decreases and the black triangle shrinks. Eventually, the
TI condition is violated and the black triangle vanishes. The right
panel shows the casewhere p(z, x)has changed from0.7 to 0.8. The
binary probabilities are now inconsistent with TI, since p(z, y) +

p(y, x) + p(x, z) = 0.95 < 1. The intersection of the hatched re-
gions is now the empty set—no ternary probabilities are consistent
with Reg and the new binary probabilities.

For RR ⇒ Reg ⇒ TI, see Luce and Suppes (1965). Falmagne
(1978) gives a set of conditions on choice probabilities that is
necessary and sufficient for RR. Fiorini (2004) gives an alternate
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Fig. 3. Restrictions on regularity.
proof and identifies a strict subset of these conditions such that
each condition is indispensable. These conditions are as follows:
for all non-empty A ⊆ T and all x ∈ A,
B:A⊆B⊆T

(−1)|B\A|PB(x) ≥ 0. (2)

For master sets of size n = 3, these conditions are identical to the
set of regularity conditions and so Reg and RR are equivalent for
this case. See McFadden and Richter (1990) for a counterexample
to Reg ⇒ RR when the master set has size n = 4.

When the master set has no more than five elements, TI is
necessary and sufficient for the set of binary choice probabilities to
be consistent with RR. See Dridi (1980) for a proof, Koppen (1995)
and literature cited there for additional necessary conditions for
binary RR when the master set has more than five elements.

However, consider the discussion of Fig. 3 above. For fixed bi-
nary choice probabilities, TI is either satisfied or it is not. If it is, the
volume of the region of non-binary choice probabilities consistent
with Reg may be greater or smaller, according to the given binary
choice probabilities. Intuitively, the amount of slack in the TI con-
ditions plays a role: when there is little slack, the set of non-binary
choice probabilities consistent with Reg is small. Since Reg is nec-
essary for RR, the set consistent with RR will be just as small or
smaller. In this sense, binary choice probabilities that just satisfy TI,
together with the hypothesis of RR, imply strong predictions about
non-binary choice probabilities. For reasonable prior distributions
over the space of random choice structures, the posterior probabil-
ity of RR will thus vary greatly over binary choice data sets whose
choice frequencies are consistentwith TI—the posterior probability
will be lower if the binary choice frequencies are near the boundary
of TI.

Fig. 4 shows the relationship between Reg and MI. As Sattath
and Tversky (1976) note, Reg and MI are complementary, in the
sense that they give upper and lower bounds, respectively, for
choice probabilities. In the context T = {x, y, z}, we can write out
the three inequalities in the definition ofMI and the six inequalities
in the definition of Reg, then combine them to obtain

p(x, y)p(x, z) ≤ PT (x) ≤ min[p(x, y), p(x, z)],
p(y, x)p(y, z) ≤ PT (y) ≤ min[p(y, x), p(y, z)],
p(z, x)p(z, y) ≤ PT (z) ≤ min[p(z, x), p(z, y)].

Fig. 4 illustrates the case where p(x, y) = 0.6, p(y, z) = 0.6 and
p(x, z) = 0.8. The region of ternary probabilities consistent with
Reg is the familiar equilateral triangle, here indicated with upward
sloped hatching. The region of ternary probabilities consistentwith
MI is the intersection of the sets defined by the inequalities PT (x) ≥

p(x, y)p(x, z) = 0.48, PT (y) ≥ p(y, x)p(y, z) = 0.24 and PT (z) ≥

p(z, x)p(z, y) = 0.08. This region is the equilateral triangle with
downward sloped hatching. The union of the regions where Reg
and MI hold is an irregular six-pointed star; their intersection is
an irregular hexagon. Points in various regions of the diagram give
counterexamples to the candidate theorems MI ⇒ Reg, Reg ⇒
Fig. 4. Regularity and the multiplicative inequality.

MI, MI ⇒ TI, and TI ⇒ MI. Since Reg and RR are equivalent
for n = 3, some also give counterexamples for MI ⇒ RR and
RR ⇒ MI.

MI is related to random utility and independent random utility,
as they are defined in Appendix A. Sattath and Tversky (1976) show
that MI is necessary for an independent random utility model and
also show that Tversky’s (1972) elimination by aspects (EBA)model
satisfies MI. Tversky (1972, Theorem 7) shows that the EBA model
is a randomutilitymodel and gives a counterexample showing that
the EBA model is not necessarily an independent random utility
model.

3. Prior distributions over random choice structures

Here we describe a parametric class of prior distributions over
the set of random choice structures on a master set T . We formu-
lated this class to have certain desirable properties, andwedemon-
strate that these properties indeed hold. Our class generalizes prior
distributions in the literature, notably by allowing statistical de-
pendence across choice probabilities PA(·), ∅ ≠ A ⊆ T . However,
it is not fully general, and we discuss below some possible exten-
sions.

We begin by describing a class of prior distributions over the
set of ranking distributions on T . We then extend this to a class of
prior distributions on the entire set of random choice structures on
T . Finally, we describe some properties of this class of priors. We
make use of Gamma and Dirichlet distributions, which have some
very useful properties. Appendix B lists some of these; for details,
see Forbes, Evans, Hastings, and Peacock (2011).

3.1. Prior distributions over random choice structures induced by
random rankings

A ranking distribution (T , Π) gives a probability distribution on
the finite set R(T ) of rankings. This makes a prior distribution on
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the set of ranking distributions a distribution over distributions on
R(T ). We will use a symmetric Dirichlet distribution for our prior,
with a Dirichlet weight of α/n! for each ranking, where α > 0 is
a scalar parameter. This gives the prior distribution of the vector
(Π(≻1), . . . , Π(≻n!)), where each Π(≻i), i = 1, . . . , n!, is the
probability of ranking ≻i, as

(Π(≻1), . . . , Π(≻n!)) ∼ Di
 α

n!
,

α

n!
, . . . ,

α

n!


,

where Di(·) denotes the Dirichlet distribution. We will use the
notation H(α, T ) to denote this prior distribution and (T , Π) ∼

H(α, T ) tomean that the ranking distribution (T , Π) is drawn from
this distribution.

We will now describe how to (randomly) construct a ranking
distribution (T , Π) ∼ H(α, T ), for a given value ofα.We first draw
independent and identically distributed weights γ (≻), ≻ ∈ R(T ):

γ (≻) ∼ Ga
 α

n!
, 1


,

where Ga(·, ·) denotes the Gammadistribution, and then construct
probabilities Π(≻) = γ (≻)/G, where

G ≡


≻′∈R(T )

γ (≻′). (3)

We can think of the weights γ (≻) as latent variables, with the
probabilities of rankings and (below) induced choice probabilities
a deterministic function of them.

The parameter α ∈ (0, ∞) governs how close a ranking dis-
tribution (T , Π) ∼ H(α, T ) is likely to be to a degenerate distri-
bution. For small α, the γ (≻) are likely to be very dissimilar. This
means that for small α, a ranking distribution (T , Π) drawn from
H(α, T ) is likely to assign probability close to unity to one of the
rankings in R(T ) and very lowprobabilities to all others. In the limit
α = 0, a ranking distribution (T , Π) drawn fromH(α, T ) is degen-
erate: it puts probability one on some ranking and probability zero
on the rest. For large α, the γ (≻) are likely to be similar, which
means that a ranking distribution (T , Π) drawn from H(α, T ) is
likely to assign probabilities close to 1/n! to all n! rankings. In
the limit α = ∞, a ranking distribution drawn from H(α, T ) as-
signs probability 1/n! to all n! rankings in R(T ). See Kotz, Balakr-
ishnan, and Johnson (2000, chapter 49) for limiting properties of
the Dirichlet distribution.

Our prior has the following marginalization property. Take any
non-empty T ′

⊆ T and let (T ′, Π ′)be themarginalization of (T , Π)
to T ′. Then (T , Π) ∼ H(α, T ) implies (T ′, Π ′) ∼ H(α, T ′). This is a
fairly direct application of the aggregation properties of indepen-
dent Gamma random variables.

3.2. Prior distributions over random choice structures

Before defining a class of distributions over the set of random
choice structures, we consider for a moment the implied distri-
bution over random choice structures induced by the distribution
H(α, T ) over ranking distributions. We note four properties of this
implied distribution. First, it assigns a probability of zero to the set
of random choice structures that cannot be induced by a random
ranking. This is true by construction. Second, the support of the
implied distribution is the entire set of random choice structures
that are induced by a random ranking. This follows from the fact
that the Dirichlet distribution has full support on the simplex of
ranking probabilities—see the expression for the Dirichlet density
in Appendix B and the reference given there. Third, two choice dis-
tributions PA(·) and PB(·) will be statistically dependent whenever
A ∩ B ≠ ∅. This is because they share common γ (≻) terms.
Finally,we can easily derive impliedmarginal distributions over
choice probabilities. Take any choice set A ⊆ T and order the ele-
ments of A as x1, . . . , x|A|. Then
PA(x1), . . . , PA(x|A|)


=


γA(x1)

G
, . . . ,

γA(x|A|)

G


, (4)

where the total weight G is given by (3) and where for every x ∈ A,
γA(x) ≡


{≻∈R(T ):h≻(A)=x} γ (≻).

Each component γA(xi) in (4) is the sum of n!/|A| independent
Gamma random variables with shape parameter α/n!. There are
|A| of them, they are mutually independent and they add to G. By
a well known property – see Appendix B.3 – of the Gamma and
Dirichlet distributions, we have
PA(x1), . . . , PA(x|A|)


∼ Di


α

|A|
, . . . ,

α

|A|


,

∅ ≠ A ⊆ T . (5)

We now define a parametric class of distributions over the set
of random choice structures on T . There are two parameters,α > 0
and λ ∈ [0, 1], and we use the notation H(α, λ, T ) to denote the
distribution for given parameter values.Wewill see that for all val-
ues α > 0 and λ ∈ [0, 1), the support ofH(α, λ, T ) is the entire set
of random choice structures. For λ = 1, and any α > 0, we have a
prior distribution restricted to the set of random choice structures
that are induced by a random ranking: H(α, 1, T ) is the distribu-
tion of PΠ induced by the distribution H(α, T ) over ranking distri-
butions.

The parameter α > 0 has a similar interpretation to the one it
has in Section 3.1, and we will see that for all non-empty A ⊆ T ,
themarginal distribution of PA(·) implied byH(α, λ, T ) is the same
as that implied by H(α, T ), namely the distribution given by (5). It
governs how close choice distributions are likely to be to degen-
erate choice distributions. In the limit α = 0, all choice distri-
butions are degenerate: for a given draw of (T , P) ∼ H(α, λ, T ),
some element of each choice set is chosen with probability one.
The element chosen with probability one will vary from one draw
of (T , P) ∼ H(α, λ, T ) to another. In the limit α = ∞, all choice
distributions are uniform discrete distributions on their support.

Fig. 5 shows themarginal density of any binary choice probabil-
ity, for various values of α. For α < 2, the density is unbounded at
zero and one, and there is a lot of probability mass near these ex-
treme points. Forα = 2, the density is uniform; forα > 2, the den-
sity is zero at the two extreme points. In the absence of much prior
information to the contrary, wewould recommend values of α less
than two; standard approaches for the specification of so-called
non-informative priors include those of Bernardo (1979) and Jef-
freys (1946), both of which lead to a choice of α = 1. The approach
of Haldane (1948) gives α = 0; the resulting density is improper.

Parameter λ ∈ [0, 1] governs the degree of prior dependence
between choice distributions on different choice sets. At the
extreme λ = 0, choice distributions are a priori independent, with
marginals given by (5).

We define the distribution H(α, λ, T ) indirectly, by describing
a random construction of P , the set of choice probability distribu-
tions. Suppose λ and α are now given. For each ranking ≻ ∈ R(T ),
we have a latent weight γ (≻), and for each non-empty A ⊆ T and
ranking ≻ ∈ R(A) we have a latent weight γ̃A(≻). They are all mu-
tually independent, with distributions

γ (≻) ∼ Ga


αλ

n!
, 1


, ≻ ∈ R(T ), (6)

and

γ̃A(≻) ∼ Ga


α(1 − λ)

|A|!
, 1


, ≻ ∈ R(A), ∅ ≠ A ⊆ T . (7)
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Fig. 5. Marginal density of any binary choice probability for α = 0.2 (solid), α =

1.0 (dot-dashed), α = 2.0 (dashed), α = 4.0 (dotted).

We construct choice probabilities from these weights as follows.
For each non-empty A ⊆ T and x ∈ A,

PA(x) =
γA(x) + γ̃A(x)

G + G̃A
, (8)

where γA(x) ≡


{≻ ∈R(T ):x=h≻(A)} γ (≻), γ̃A(x) ≡


{≻ ∈R(A):x=h≻(A)}

γ̃A(≻), G̃A ≡


{≻∈R(A)} γ̃A(≻) and G is given by (3).
Eq. (8) resembles the representation of choice probabilities in

Luce’s (1959) choice model. Note, however, that the weights γA(x)
and γ̃A(x) are functions not only of x but also of A. Also, choice
probabilities are jointly constrained because they have terms in
common.

It is also important to understand that we introduce the γ (≻)
and γ̃A(≻) weights only as a device for specifying joint prior dis-
tributions over the various probabilities PA(x). Given the proba-
bilities, the weights have no behavioral import. The fact that the
weights are not identified – multiplying all the weights by a posi-
tive constant does not change choice probabilities – is no cause for
concern since the probabilities themselves are identified.

Wedescribemethods for posterior inference inMcCausland and
Marley (2013). Inducing a prior over probabilities by specifying
a prior over weights does not present any serious problems. In
that paper, we simulate the posterior distribution of weights and
then use the simulation sample of weights to generate a posterior
sample of probabilities. The fact that the prior is proper implies
that the posterior is proper, despite the non-identification of the
weights.

3.3. Properties of prior

This family of prior distributions has the following properties.

Marginal Distributions. For each choice set A, the marginal distri-
bution of the distribution PA(·) is given by (5), whatever
the value of λ.

Proof. For fixed A and x, the two numerator terms in (8) are inde-
pendent. The first is the sumof n!/|A| independentGamma random
variables with shape αλ/n! and scale 1. The second is the sum of
|A|!/|A| independent Gammas with shape α(1 − λ)/|A|! and scale
1. The numerator is therefore Gammawith shapeα/|A| and scale 1.
For fixed A, the various numerators, for x ∈ A, are independent and
their sum is the denominator. The result is then a standard prop-
erty of the Dirichlet distribution—see Appendix B.3. �
Marginalization. Suppose P ∼ H(α, λ, T ) and let T ′ be any non-
empty subset of T . Then (P ′, T ′), the restriction of (P, T )
to T ′, satisfies P ′

∼ H(α, λ, T ′).

Proof. Let n′ be the cardinality of T ′. For all ≻′
∈ R(T ′), let γ ′(≻′)

=


{≻∈R(T ):∀x,y∈T ′, x≻y⇒x≻′ y} γ (≻).
Gathering terms, we can write, for all non-empty A ⊆ T ′,

PA(x) =
γ ′

A(x) + γ̃A(x)

G + G̃A
,

where γ ′

A(x) =


{≻′ ∈R(T ′):x=h
≻′ (A)} γ ′(≻′), and the other terms are

defined as they are in (8). Since (P ′, T ′) is the restriction of (P, T )
to T ′, P ′ agrees with P for non-empty A ⊆ T ′.

This equation takes the same form as Eq. (8), so we just need to
verify that the joint distribution of the choice probabilities agrees
with H(α, λ, T ′). Each γ ′(≻′) is the sum of n!/n′

! independent
terms, eachwith a Gamma distributionwith shapeαλ/n! and scale
1. Therefore, the γ ′(≻′) are Gammawith shape αλ/n′

! and scale 1.
Since they have no γ (≻) terms in common, they are independent.
This matches the direct construction of P ∼ H(α, λ, T ′). �

Invariance. The distribution of P is invariant to permutations of
the elements of T . This is a symmetry property similar
to exchangeability. The result is obvious.

4. Results

We now report prior simulation results, beginning with proba-
bilities of simple axioms and thenmoving on to the probabilities of
compound axioms and the relationships among axioms. We com-
pute approximations to probabilities using independence Monte
Carlo. For given λ, α and n, we draw M random choice structures
from H(α, λ, T ), where T = {x1, . . . , xn}. The number of times an
axiom holds, divided byM , is an approximation of the prior proba-
bility p that the axiom holds, and the simulation standard error of
the approximation is

√
p(1 − p)/M .

All probabilities described in this section are prior probabilities
of axioms, as a function of α and λ.

4.1. Prior probabilities of simple axioms

Figs. 6–9 show probabilities of the four axioms on binary choice
probabilities:weak,moderate and strong transitivity and the trian-
gle inequality. Figs. 10–12 show probabilities of the three other ax-
ioms: regularity, random ranking and themultiplicative inequality.

Two or three panels in each figure show axiom probability
contours for n = 3, 4 and sometimes n = 5. Each panel gives
a contour plot of an axiom’s probability as a function of λ and α.
Plots are based on samples ofM = 5× 106 draws for n = 3, 4 and
M = 2 × 105 draws for n = 5, one sample for each point on a grid
of values.

For the binary choice axioms, which are relatively probable,
probabilities are plotted over the range 0 ≤ λ ≤ 1 and 0 ≤ α ≤ 2.
When α = 2, binary choice probabilities have a Dirichlet distri-
bution with parameter values set to one. This is the same as the
uniform distribution on the interval [0, 1]. The lower the value of
α, the more probability mass is concentrated near zero and one.

For the other axioms, probabilities are plotted over the same
range of α, 0 ≤ α ≤ 2, but for restricted ranges of λ. For n = 3, we
use the full range 0 ≤ λ ≤ 1; for n = 4, 0.97 ≤ λ ≤ 1; and for
n = 5, 0.994 ≤ λ ≤ 1.

Probability values for various contour levels are labeled. The
levels vary from panel to panel and figure to figure, but the grey
scale does not. White represents a probability of zero, darker
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Fig. 6. Probability of weak stochastic transitivity, for n = 3, 4, 5.
Fig. 7. Probability of moderate stochastic transitivity, for n = 3, 4, 5.
Fig. 8. Probability of strong stochastic transitivity, for n = 3, 4.
Fig. 9. Probability of triangle inequality, for n = 3, 4, 5.
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Fig. 10. Probability of regularity, for n = 3, 4, 5.
Fig. 11. Probability of random ranking, for n = 3, 4, 5.
Fig. 12. Probability of multiplicative inequality, for n = 3, 4.
greys represent higher probabilities, and greys of equal darkness
represent the same probabilities in each panel and figure.

We see that axioms for binary probabilities are much more
probable than other axioms, except forλ very close to one, inwhich
case regularity and random ranking have probability close to one.
WST and TI are particularly probable, even for n = 5 objects. That
Reg, RR and Mul are quite improbable (i.e. strong) is perhaps not
surprising given that the number of constraints is larger and in-
volvemany choice probabilities other than the binary. On the other
hand, the random ranking hypothesis is often regarded in Eco-
nomics and Marketing as an innocuous condition. In fact, relative
to unrestricted random choice, it is a very strong condition.

In Figs. 10 and 11, we see that regularity is an important part
of the random ranking hypothesis, in the sense that in the region
where Reg has reasonable probability, the probability of RR as a
fraction of the probability of Reg – the conditional probability of
RR given Reg – is not close to zero. At least for n ≤ 5, violations
of RR can often be attributed to violations of Reg. When we look at
Fig. 9 as well, we see that we cannot say the same thing about the
triangle inequality,which is also necessary for RR. Except for values
of λ extremely close to 1, the probability of the triangle inequality
is much higher than the probability of RR.

The probability of the multiplicative inequality, like those of
Reg and RR, varies strongly with λ, becoming much higher close to
λ = 1. However, unlike Reg and RR, Mul does not become certain
when λ = 1. It is a very strong condition, even when we condi-
tion on RR. Independent random utility (as defined in Appendix A),
frequently assumed in models applied in empirical work, is even
stronger than Mul.

4.2. Prior probabilities of compound axioms

We illustrate the probabilities of compound axioms by report-
ing a normalized joint probability,whichwewill call the probability
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Fig. 13. Probability gain, weak stochastic transitivity and triangle inequality, for n = 3, 4, 5.
gain. For any two axioms, we define the probability gain β12 as

β12 ≡
Pr[A1 ∩ A2]

Pr[A1] Pr[A2]
,

where A1 is the event that the first axiom holds and A2 the event
that the second holds. The probability gain β12 is equal to both
Pr[A1|A2]/ Pr[A1] and Pr[A2|A1]/ Pr[A2], so it measures how the
probability of one axiom changes when we condition on the other
axiom. If events A1 and A2 are independent, then β12 = 1. If know-
ing that the first axiom holds increases the probability of the sec-
ond holding, then β12 > 1; if it decreases it, then β12 < 1. The
measure β12 is clearly symmetric, always equal to β21. If the first
axiom implies the second, then A1 ⊆ A2 and β12 = 1/ Pr[A2].

Fig. 13 shows how the probability gain varies with λ and α for
the two axioms WST and TI. We see that the event that WST holds
and the event that TI holds are nearly statistically independent
when λ is close to one. The degree of dependence of these events –
as measured by probability gain – increases as choice probabilities
become more independent – as measured by λ. Dependence also
increases with n.

5. Conclusions and possible extensions

We have formulated a class of prior distributions over the set
of random choice structures. Each prior is a joint probability dis-
tribution over a collection PA(·), ∅ ≠ A ⊆ T , of discrete choice
probabilities. The class is somewhat flexible, with parameter α
governing consistency of choices in repeated identical choice sit-
uations – whether choice probabilities are likely to be close to zero
and one – and λ governing the degree of statistical dependence of
choice probabilities across choice sets.

Our class of prior distributions is innovative in two dimensions,
relative to priors described in the literature, such as those of
Cavagnaro and Davis-Stober (2013), Myung et al. (2005) and
Zwilling et al. (2011). First, each prior is a distribution over a larger
collection of choice probabilities — it gives the joint distribution of
all the choice probabilities PA(·), for non-empty A ⊆ T , not just the
oneswhere A is a doubleton set. Second, one can control the degree
of statistical dependence across these choice probabilities. Setting
λ = 0 givesmutual independence of PA(·), ∅ ≠ A ⊆ T ; λ = 1 gives
a prior with support equal to the set of random choice structures
induced by random rankings. All intermediate values are possible.

At the same time, our prior has other desirable properties.
The λ parameter influences only the dependence structure and
not the marginal distributions of the PA(·). These marginals are
known distributions, with moments in closed form, which makes
interpretation easier.

The marginalization property assures us that once we choose
values for the prior parameters α and λ, our prior information
about choice probabilities on subsets of T ′ does not depend on
whether the master set is T ′ itself or some superset T . Whether
(T ′, P) ∼ H(α, λ, T ′) or (T , P) ∼ H(α, λ, T ), the joint distribution
of the probabilities PA(·), for non-empty A ⊆ T ′, is the same. We
emphasize that this consistency is a property of the prior distribu-
tion, not of the random choice structures themselves. If we, the au-
thors, were tomake predictions about how an agent would behave
in choice situations involving only x, y and z, we might well want
to allow for various kinds of inconsistency on the part of the agent,
but our predictions would not depend on whether the master set
is {x, y, z} or {w, x, y, z}.

The invariance property is a form of symmetry or anonymity. A
particular random choice structure drawn from one of the priors
may assign very different choice probabilities to different objects.
The symmetry lies in the fact that this draw is no more or less
likely than the other |T |! random choice structures obtained by
relabelling the elements of the master set.

We believe this invariance is appropriate for the prior analysis
in the present paper. For the purposes of data analysis, where
one knows the identities and attributes of the choice objects, one
might wish to dispense with invariance. One way to extend our
class of priors to do this would be to allow the α parameter in the
distributions of γA(≻) and γ̃A(≻), given by (6) and (7), to depend
on ≻. There are many ways in which one might do this; as long as
the weights remain independent Gamma random variables with
common rate parameter, distributions over choice probabilities
remain Dirichlet, although no longer symmetric.

The prior could be generalized in other ways, using mixtures
for example. But we would caution against adding flexibility for
its own sake. In particular, one should keep in mind that the
data generating process is already non-parametric in the sense
that each choice distribution is fully flexible. The fact that there
are a finite number of probabilities for a given master set comes
from the finiteness of choice sets, not the arbitrary imposition of
a parametric family of data densities. Generalizing the prior may
turn out to be desirable in some cases, but it should proceed from
an understanding of what regions of the space of random choice
structures are over- and under-represented for particular choices
of prior from the class we describe here.

Using our class of priors, we studied the strength of various
axioms of discrete probabilistic choice, measuring how restrictive
they are, both alone and in the presence of other axioms. Wemea-
sure the strength of an axiom according to its prior (im)probability.
We measure its relationship with other axioms according to what
we call probability gain, a function of joint and marginal axiom
probabilities. We obtained information about the relationship be-
tween WST and TI, neither of which implies the other. These ex-
ercises depend on the particular choice of a prior, but we reported
results for a wide range of prior distributions.

RR is a very strong condition, in the following sense. For n = 4
and n = 5, and presumably for n > 5, its probability is very close
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to zero except for values of λ very close to one. On the other hand,
the triangle inequality, a necessary condition for RR, is much more
probable, for a wide range of parameter values. Regularity, also a
necessary condition for RR, is much closer to RR in probability.

The multiplicative inequality is also a strong condition, even
when RR is imposed. Some models used in Applied Economics,
notably the multinomial logit model, are independent random
utility models (as defined in Appendix A) and the multiplicative
inequality is a necessary condition for independent random utility.
Also, MI is a necessary condition for EBA. For these reasons, it
would be interesting to see how behaviorally realistic it is.

Prior simulation gives us useful information on what we can
hope to learn from data. Since the Bayes factor in favor of an ax-
iom is the ratio of its posterior and prior probabilities, it is bounded
above by the reciprocal of its prior probability. We obtain simula-
tion consistent approximations of these prior probabilities, which
we can use to compute these bounds.

Bounds on Bayes factors reveal the limits on howmuch support
data can provide in favor of a particular axiom. For example, given
the high prior probability of the triangle inequality across priors,
the amount of evidence that data from a single decision maker can
provide in its favor is quite limited. When one tests RR by testing
its much more probable consequence, the triangle inequality, the
evidence in favor of RR is likewise limited—even with an infinite
amount of data on all doubleton sets, the Bayes factor cannot
exceed the prior probability of the triangle inequality. A practical
implication of this is that there are rapidly diminishing returns in
collecting only binary data to test RR.

We offer two recommendations on testing RR using discrete
choice data. First, even when only binary choice data are avail-
able and n ≤ 5, it would be useful to compute Bayes factors in
favor of RR based on a prior distribution over the complete ran-
dom choice structure, not just the collection of binary choice prob-
abilities. This is not the same as the Bayes factor in favor of the
triangle inequality.Wehave seen that for given binary choice prob-
abilities satisfying TI, RR implies constraints on non-binary prob-
abilities that are more or less restrictive depending on what the
values of those binary choice probabilities are. Therefore the trun-
cation of a prior over all choice probabilities to the RR region
induces important changes to the joint prior distribution of the var-
ious binary probabilities—the pre-truncation and post-truncation
distributions over the binary probabilities are quite different, and
the latter is not simply a truncation of the former to the region
compatible with TI.

As we now show, an implication of this is that some
configurations of binary probabilities consistent with TI give more
or less evidence in favor of RR. Denote the vector of all binary
probabilities by p and the events of TI and RR holding as TI and RR.
Then Bayes’ rule relates the probability of RR holding given p and
TI to the ratio of post- to pre-truncated densities, evaluated at p.

Pr[RR|p, TI] =
f (p|RR, TI)
f (p|TI)

Pr[RR|TI],

where f (p|TI) is the marginal density of p implied by a TI-consist-
ent prior over the random choice structure, and f (p|RR) is the con-
ditional density of p given RR, the result of truncation.

To take another approach, supposen ≤ 5 andweobserve binary
choice probabilities directly, as if we had an infinite amount of
data. All configurations of binary choice probabilities satisfying the
triangle inequality are consistentwith RR. Here, consistencymeans
that we can choose values for all non-binary choice probabilities
in such a way that the complete random choice structure satisfies
RR. However, different configurations of binary probabilities will
be more or less easy to complete—the volume or prior probability
of the consistent region (in the space of non-binary probabilities)
will depend on what the observed binary choice probabilities are.
Fig. 14. Ternary probabilities compatible with RR and specified binary choice
probabilities. Left panel: p(x, y) = p(y, z) = p(z, x) = 0.65. Right panel: p(x, y) =

p(y, z) = 0.65, p(z, x) = 0.35.

We see these issues more clearly in an example, illustrated in
Fig. 14, for the master set T = {x, y, z}. The two panels show two
different, but similar, configurations of binary choice probabilities.
In the left panel, p(x, y) = 0.65, p(y, z) = 0.65 and p(z, x) = 0.65.
In the right panel, the first two probabilities are the same, but
p(z, x) is replaced by its complementary probability, 0.35. In both
panels, the shaded triangle is the set of ternary probabilities com-
patible with regularity and the respective configurations of binary
probabilities. Despite the similar binary choice probabilities, the
compatible region on the right has an area 49 times as large as
the region on the left. All this will be reflected in Bayes factors.
For example, suppose that the prior assigns equal density to the
two configurations of binary choice probabilities; independence
and symmetry are sufficient conditions. Suppose further that the
ternary probability P{x,y,z}(·) is independent of the binary proba-
bilities and uniform on the two-dimensional regular simplex. Then
the limiting Bayes factor in favor of RR for binary data with choice
frequencies p̃(x, y) = 0.65, p̃(y, z) = 0.65 and p̃(z, x) = 0.35
will be 49 times larger than the Bayes factor for choice frequencies
p̃(x, y) = 0.65, p̃(y, z) = 0.65 and p̃(z, x) = 0.65. In contrast, the
limiting Bayes factors in favor of TI are both equal to the reciprocal
of the prior probability of TI.

The second recommendation is to test RRusing data fromchoice
sets of various sizes. The Falmagne conditions, Eq. (2), are linear
inequalities in choice probabilities over various choice sets. Our
results show that these are much more constraining than the
triangle inequality for binary choice probabilities, so data on higher
order choice probabilities should be very useful for testing RR. Such
data are very rare, however, and new data would likely need to be
collected. Collecting data is costly, of course, and choice becomes
more difficult as the number and size of choice sets increases.
But we would not be subject to the severely diminishing returns
associated with collecting only binary data.

We have emphasized the random ranking hypothesis, partly
because of its wide use in so-called random utility models—see
Appendix A. This does not preclude us or others from investigat-
ing other models. Such an investigation would require framing a
model or behavioral condition as a restriction on the choice prob-
abilities of a random choice structure. In some cases, this might
require providing further structure, to accommodate choice envi-
ronments where the agent can choose none of the options or state
indifference. We could extend our framework, currently based on
assigning random weight functions to sets R(T ) and R(A) of rank
orders, to accommodate weight functions over other types of rela-
tions, such as weak or partial orders.

Our class of prior distributions on random choice structures
serves several purposes beyondmeasuring the strength of axioms,
and computing bounds on Bayes factors. We have described how
prior simulation can be used to generate conjectures about the
logical relationship between axioms. In future work we plan to
use prior simulation to generate conjectures about best–worst
choice probabilities — see Marley and Louviere (2005) for models
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of best–worst choice. This could help direct the search for theorems
giving necessary and/or sufficient conditions for consistency of
best–worst choice probabilities with random ranking. To give
an example illustrating how this could proceed, we noticed in
simulationswe ran for the current paper (for best-only choice) that
there was a subset of the Falmagne (1978) conditions for RR that
was never pivotal — whenever one of these necessary conditions
was false, there was always some necessary condition outside this
set that was also false. The natural conjecture that these conditions
are dispensable is in fact a theorem, although one which was
previously known and proven in Fiorini (2004).

Of course the principal purpose of our class of priors is Bayesian
data analysis. We plan to develop a testing ground for various
choice axioms in an abstract choice setting, based on our class
of priors. Axioms of interest include the axioms studied in this
paper, other extant axioms and perhaps axioms that are yet to be
proposed.

We hope to examine several data sets to explore the empir-
ical support for various axioms in various choice contexts. We
are interested in data sets on consumer choice, but also data sets
specially constructed to elicit choice anomalies such as context
effects or violations of stochastic transitivity. Marketing studies
tend to use models satisfying the random ranking hypothesis to
analyze discrete consumer choice. In this context, these tightmod-
els have reasonably good predictive performance. In the litera-
ture on choice anomalies, there are examples of context effects
incompatible with the random ranking hypothesis as well as sys-
tematic violations of various forms of stochastic transitivity—see
Busemeyer and Rieskamp (2013) and Rieskamp, Busemeyer, and
Mellers (2006) for summaries of such effects and of stochastic dy-
namic models, incompatible with RR, that describe them. How-
ever, the choice situations that lead to such context effects are con-
trived – i.e. specifically constructed to lead to anomalies – and not
very representative of naturally occurring choices. Furthermore,
the models used to analyze these data are typically evaluated only
by how well they capture these specialized data. Marketing prac-
titioners are understandably reluctant to discard their models just
because the data on context effects are incompatible with the ran-
dom ranking hypothesis. In studying awide range of data sets and a
wide range of axioms, we hope to be able to shed light onwhat sets
of axioms – or priors, more generally – on random choice struc-
tures can accommodate observed choice anomalies, while at the
same time be disciplined enough to predict choices well in more
naturally occurring choice situations. Recent research that studies
rather limited extension of the random ranking framework sug-
gest that such an approach may be successful: first, there are ap-
proaches that model differences in the scale factor (variance com-
ponent) of a random ranking model across choice sets — see Lou-
viere and Swait (2010) and Salisbury and Feinberg (2010a) for gen-
eral discussions of the approach and Hutchinson, Zauberman, and
Meyer (2010) and Salisbury and Feinberg (2010b) for value ver-
sus variance interpretations of temporal discounting data; second,
there are approaches that can be roughly described as involving
‘‘context-dependent random ranking models’’ — see Trueblood’s
(2012) and Trueblood, Brown, and Heathcote’s (2013) work on a
multi-attribute linear ballistic accumulator (MLBA) model, which
models both the choices made and the time to make them.

We plan to introduce methods for posterior analysis and report
results of data analysis in a companion paper. We do not do this
here, partly because the practical implementation of posterior sim-
ulation methods is not straightforward. A lengthy description of
our posterior simulation methods would be required. While the
marginal distribution of choice probabilities is Dirichlet, the con-
jugate distribution for multinomial observations, our joint prior
is not conjugate for joint multinomial observations on multiple
choice sets. This is because of prior dependence among the differ-
ent choice probabilities. In fact, we do not even have a joint density
in closed form for the various choice probabilities, only for the la-
tent weights.

On the other hand, these difficulties are not insurmountable, as
long as we restrict our attention to master sets with a small num-
ber of elements.2 We have already noted that we can simulate the
posterior distribution of the weights and use this posterior sample
to generate a sample from the posterior distribution of probabil-
ities. We have also noted that marginal likelihood computations,
essential for computing Bayes factors, are fairly straightforward.
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Appendix A. On random utility

In Economics and Psychology, there is a relatively long his-
tory of theory and application of probabilistic discrete choicemod-
els. In both fields, most of these models are so-called random
utility models, those in which agents select from each choice set
as if they drew, independently and from the same continuous joint
distribution, a collection ux, x ∈ T , of utilities and then went on to
choose the highest-utility element from that set. The assumption
that utilities have a continuous distribution implies that the prob-
ability that any two utilities are equal is zero. If the definition is
only asserted for the binary choice probabilities, then the model is
called a binary random utility model. If the utilities ux, x ∈ T , are
mutually independent, then we say the model is an independent
random utility model.

The sense above of the term ‘‘random utility’’ is equivalent to
the random ranking hypothesis of Section 2, as shown by Block and
Marschak (1960) and Luce and Suppes (1965, Theorem 49). While
this meaning of ‘‘random utility’’ is extensively used, especially in
Economics and Marketing, it is not universal, and is in fact quite
restrictive relative to other definitions, such as that of Regenwetter
and Davis-Stober (2008, Definition 11). This more general case
has been applied to so-called ternary choice, where the agent can
choose one of two options or state indifference between them,
and is also applicable to various cases where the options might be
considered to be partially ordered, as in Regenwetter and Davis-
Stober (2008).

For the remainder of this section, we use the term ‘‘random
utility’’ in the narrow sense above. For an example of a random
utility model, suppose we have a master set T = {x, y, z} and let
the utility of each object r ∈ T be given by ur = vr+ϵr , where ϵx, ϵy
and ϵz are independent extreme value errors, and assume that vx =

vy = ln 2 and vz = ln 1 = 0. This is a particularly simple example
of the familiar multinomial logit (or MNL) model, for which the
probability of choosing x when presented with x and y is 1/2, and
the probability of choosing xwhen presented with {x, y, z} is 2/5.

In Psychology, random utility models include the models of
Luce and Thurstone, the most common discrete choice models in
Psychology. See summaries in Luce (1977, 1994), Luce and Sup-
pes (1965) and Marley’s (1992a, 1992b, 2002) editorial introduc-
tions to special journal issues. Busemeyer and Rieskamp (2013)
and Rieskamp et al. (2006) present excellent summaries of current

2 Many of the operations we perform on random choice models involve iteration
over all 2n subsets of the master set and all n! rankings on the master set, where n
is the cardinality of the master set. This is prohibitive for all but small numbers of
elements.
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theory and data, and Salisbury and Feinberg (2010a), with com-
mentary by Louviere and Swait (2010), present alternative theo-
retical interpretations of related data.

In Economics too, choice models are frequently random utility
ones. Those of McFadden and his collaborators (see McFadden
(1976, 2001) and Train (2009)) figure prominently in the Applied
Economics literature, with much being made of the result of
McFadden and Train (2000) showing a limiting equivalence of the
set ofmixedmultinomial logitmodels and the set of randomutility
models. Thesemodels have been applied to choice optionswithout
any detailed structure, but also (and more often) to structured
objects such as lotteries (gambles) or, say, cars of different make,
color, etc. Clearly, the more structured models are special cases of
the general class of random choice models.

Random utility is rarely questioned or defended in Economics,
or even acknowledged to be restrictive. The situation is somewhat
different in Psychology, where there are various very successful
dynamic stochastic choice models that are not random utility
models, as summarized in Busemeyer and Rieskamp (2013) and
Rieskamp et al. (2006).

Falmagne (1978) and McFadden and Richter (1990, manuscript
1970) show that random utility is indeed restrictive. The following
examplemakes it clearwhy: supposewemodify the choice process
described above so that the ‘‘utility’’ of x is a function not only of
x but also the choice set A that the decision maker faces. Let the
universe of objects be as before, but now define

ur = vr + wr1A(z) + ϵr , r ∈ T ,

whereA is the choice set presented and1A(z) is equal to one if z ∈ A
and zero otherwise. If we take vx = vy = ln 2 and vz = ln 1 = 0, as
before, and set wx = ln 2, wy = wz = ln 1 = 0, we obtain that the
probability of choosing xwhen presentedwith x and y, i.e., P{x,y}(x),
is 1/2, as before, and the probability of choosing xwhen presented
with T = {x, y, z}, i.e., PT (x), is 4/7.

This specification of ‘‘utility’’, by being a function of the choice
set, is not a utility in the sense given in the definition of a random
utility model. In fact, the induced choice probabilities cannot be
generated by any random utility model. To see this, suppose that
they can. Then P{x,y}(x) is the probability of the event [ux ≥ uy] and
PT (x) is the probability of the event [ux ≥ uy]∩[ux ≥ uz]. The latter,
being a subset of the former, cannot have a higher probability, no
matter what the dependence structure of the ur is. But PT (x) >
P{x,y}(x) for the given example.

Appendix B. Some properties of the gamma and Dirichlet dis-
tributions

We mention here some well known properties of the Gamma
and Dirichlet distributions. For details and other properties, see
Forbes et al. (2011). There are two standard parameterizations of
the Gamma distribution, we use the one for which the Gamma
density Ga(α, β) is

f (γ |α, β) =


βα

Γ (α)
γ α−1e−βγ γ > 0,

0 otherwise.

The density of the J-dimensional Dirichlet distribution Di(α1, . . . ,
αJ) is

f (p1, . . . , pJ |α1, . . . , αJ)

=


Γ (A)

J
j=1

Γ (αj)

J
j=1

p
αj−1
j , p1, . . . , pJ ≥ 0,

J
j=1

pj = 1,

0 otherwise,

where A =
J

j=1 αj.
B.1. Aggregation property of the gamma distribution

If random variables γ1 and γ2 are independent, with γ1 ∼

Ga(α1, β) and γ2 ∼ Ga(α2, β), then γ1 + γ2 ∼ Ga(α1 + α2, β).

B.2. Mean and variance of gamma distribution

If γ ∼ Ga(α, β), then E[γ ] = α/β and Var[γ ] = α/β2. In this
paper, only ratios of gammas are important, and we set the scale
parameter β = 1. If γ ∼ Ga(α, 1), then E[γ ] = Var[γ ] = α.
For values of α close to zero, the standard deviation is much higher
than the mean, implying a highly skewed distribution.

B.3. Relationship between the gamma and Dirichlet distributions

If the random variables γj, j = 1, . . . , J , are independent with
γj ∼ Ga(αj, β), where α1, . . . , αJ and β are positive parameters,
then

(γ1/G, . . . , γJ/G) ∼ Di(α1, . . . , αJ),

where G =
J

j=1 γj.

B.4. Mean and covariance of Dirichlet distribution

If (p1, . . . , pJ) ∼ Di(α1, . . . , αJ), then

E[pj] =
αj

A
, Var[pj] =

αj(A − αj)

A2(A + 1)
,

Cov[pi, pj] =
−αiαj

A2(A + 1)
, j ≠ i,

where A =
n

j=1 αj.

B.5. Neutrality of Dirichlet distribution

If (p1, . . . , pJ) ∼ Di(α1, . . . , αJ), then pj and
p1

1 − pj
, . . . ,

pj−1

1 − pj
, . . . ,

pj+1

1 − pj
, . . . ,

pJ
1 − pj


are independent.

Appendix C. Computational issues

The following appendix discusses some computational issues
that are important for implementing the computational experi-
ments described in the paper. For more on the C language, see
Kernighan and Ritchie (1988). For more on the GNU Scientific Li-
brary, see Galassi et al. (2009).

C.1. Operations on sets

We program in C and represent sets using unsigned integers.
We use C language bit operations to compute unions, intersections
and complements; and to test conditions such as set membership
and set inclusion.

In C, it is most convenient to index the elements of T as i =

0, 1, . . . , n−1.We represent the singleton set containing an object
i by the constant unsigned integer 2i. The union between sets A
and B is given by the bitwise ‘or’ operation A|B; their intersection,
by the bitwise ‘and’ operation A&B. We represent the master set T
by the integer 2n

− 1 and the complement of set A in T by T-A.
The C expression (A&B)==B is true if and only if B is a subset of A.
Testing setmembership is just a special case, using representations
for singleton sets. To iterate through all subsets of the master set,
we just iterate through the integers 0, 1, . . . , 2n

− 1.
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C.2. Iteration over rankings

Iterating through all permutations of the integers 0, . . . , n − 1
is a standard problem in combinatorics. We represent rankings
as permutations and use routines provided in the GNU Scientific
Library (GSL) for iterating through permutations in lexicographic
order.

C.3. Numerically robust checks of axioms

We discovered in preliminary simulations that when probabil-
ities are computed and compared in the direct and obvious way
(see the example below), rounding errors sometimes led to false
conclusions about whether a given random choice structure satis-
fied a given axiom.Herewedescribe themeasureswe took tomake
checking axioms more numerically robust.

To understand the issue, consider the comparison of P{x,y}(x) ≡

p(x, y) and P{x,y,z}(x), which arises when verifying the regularity
axiom for the random choice structure P . The naive way of doing
this is to construct both probabilities, then form the difference and
test the sign of the result.

First consider the prior distribution over random choice struc-
tures that are random utility rational, the case λ = 1. We leave
aside the obvious objection that in this case we know that reg-
ularity must hold. Then the difference p(x, y) − P{x,y,z}(x) is the
probability that the random ranking ≻ satisfies z ≻ x ≻ y. This
probability will often be much smaller than each of the probabili-
ties p(x, y) and P{x,y,z}(x).When it is, the rounding error of the com-
puted difference will be about the same as the rounding errors of
p(x, y) and P{x,y,z}(x), but this will be a much greater fraction of its
value.We obtain amuchmore numerically precise value of the dif-
ference of the probabilities by summing up the γ (≻) weights for
the orders satisfying z ≻ x ≻ y and dividing by the grand total G.

Now consider the more general prior distribution, the case
λ < 1. In terms of weights, the difference p(x, y) − P{x,y,z}(x) is

γ{x,y}(x) + γ̃{x,y}(x)

G + G̃{x,y}
−

γ{x,y,z}(x) + γ̃{x,y,z}(x)

G + G̃{x,y,z}
.

When γ{x,y}(x) − γ{x,y,z}(x), γ̃{x,y}(x) and γ̃{x,y,z}(x) are very small
compared toγ{x,y}(x), and G̃{x,y} and G̃{x,y,z} are very small compared
toG, the sign of the computed differencemay be incorrect, possibly
leading to an incorrect conclusion about whether P satisfies
regularity.

It might seem that such a case would arise with minuscule
probability, and it is indeed rare, even for the small values of α for
which we see it at all. (We noticed it by investigating cases where
impossible combinations of axioms were ‘detected’.)

To explain why this happens with non-negligible probability,
we first point out some properties of the gamma distribution.
When the shape parameter of a gamma random variable is close
to zero, the standard deviation is much larger than the mean and
a set of draws is likely to vary over many orders of magnitude.
Recall that the weights γ (≻) have shape αλ/n! and the weights
γ̃A(≻) have shape α(1 − λ)/|A|!. The quantities γ{x,y,z}(x) and
γ{x,y}(x)−γ{x,y,z}(x) are independent Gamma randomvariables, the
firstwith shapeαλ/3 (see result, Eq. (8)) and the secondwith shape
αλ/6 (exactly one sixth of the γ (≻) weights will be for orders ≻

satisfying z ≻ x ≻ y, whatever the value of n). For small enough
α, the first, as a fraction of the second, can easily be smaller than
the machine epsilon of a computer, the smallest increment to the
value 1 that gives a sum that the computer can distinguish from 1.

While we have succeeded in making our axiom checks much
more numerically robust, we suspect thatmany readerswill have a
lingering concern about priors putting somuch probabilitymass so
close to the boundary of the ‘‘regularity’’ region that classification
errors have non-negligible frequency. Anticipating this concern,
we offer the following comments.

First, this feature is only really extreme for priors near the
boundary of the parameter space, in a region that we do not
consider to be very plausible, as it implies highprobability of binary
choice probabilities being extremely close to zero or one. There is
no bright line of plausibility, and we have chosen to report results
down to very low values of α, doing what is necessary for reliable
results.

Second, we expect this feature to arise for many reasonable pri-
ors, not just those in the parametric class we chose. First take the
case of random choice structures induced by ranking distributions.
Binary choice probabilities are aggregates of ranking probabilities,
and for the prior distribution of the former to put significant prob-
ability mass close to zero and one, either the distributions of the
latter need to be highly skewed, or one has to impose a strong de-
pendence structure on the joint distribution of the ranking prob-
abilities. Our choice not to impose such structure is completely
appropriate given the non-parametric nature of our investigation.
The consequence is highly skewed ranking probabilities, which
implies lots of prior mass near the boundary of the regularity
region. The general case of random choice structures is more com-
plicated, but if we want a similarly unstructured prior that puts a
fair amount of probabilitymass on structures that are random util-
ity rational, then it is inevitable that a lot of prior mass will lie very
near the boundary of the regularity region.

Tomake our checks of various axiomsmore efficient and robust
to machine precision errors, we follow some useful guidelines. In-
stead of computing the difference of two probabilities that are both
greater than 1/2, we compute minus the difference of their com-
plements. If the two probabilities are very close to one, then the
latter result will have much greater numerical precision, since the
true difference will be small compared with the probabilities and
less so compared with the complements. We avoid unnecessary
divisions. For example, when comparing two ratios, we first cross
multiply to clear the denominator so that only products remain.
Finally, we compute linear combinations of terms γA(x) directly in
terms of sums of γ (≻) termswhen this ismore numerically robust.

C.3.1. Numerically robust checks of MST and SST
We first rewrite the MST condition as

p(x, y) ≥
1
2

and p(y, z) ≥
1
2

⇒ p(z, x) ≤ max[p(y, x), p(z, y)]
(9)

and the SST condition as

p(x, y) ≥
1
2

and p(y, z) ≥
1
2

⇒ p(z, x) ≤ min[p(y, x), p(z, y)].
We can then write a condition such as p(z, x) ≤ p(z, y) as

γ{x,z}(z) + γ̃{x,z}(z)

G + G̃{x,z}
−

γ{y,z}(z) + γ̃{y,z}(z)

G + G̃{y,z}
≤ 0,

then as
γ{x,z}(z) − γ{y,z}(z)


G +


γ̃{x,z}(z) − γ̃{y,z}(z)


G

+

γ{x,z}(z) + γ{x,z}(z)


G̃{y,z}

−

γ{y,z}(z) + γ{y,z}(z)


G̃{x,z} ≤ 0.

The difference in the first term can be written
γ{x,z}(z) − γ{y,z}(z) =


{≻ ∈R(T ):y≻z≻x}

γ (≻).

Computing it by adding up terms as indicated on the right hand
side is more numerically robust than forming the difference of the
sums γ{x,z}(z) and γ{y,z}(z). When this difference is many orders of
magnitude less than the two terms, the advantage is important.
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C.3.2. Numerically robust checks of TI
We first rewrite the TI condition as follows. For all tripleton

subsets {x, y, z} ⊆ T ,
p(x, y) + p(y, z) + p(z, x) ≥ 1,
p(y, x) + p(z, y) + p(x, z) ≥ 1.
At least three of the six binary probabilities in these two equa-
tions must be greater than or equal to 1/2. Therefore, in at least
one equation, at least two of the binary probabilities are greater
or equal to 1/2. Without loss of generality, suppose that these are
p(x, y) and p(y, z). Then the sum in the first equation must hold
and TI reduces to
p(z, x) ≤ p(y, x) + p(z, y).
We can therefore say that the triangle inequality is equivalent to
the following condition: for all x, y, z ∈ T ,

p(x, y) ≥
1
2

and p(y, z) ≥
1
2

⇒ p(z, x) ≤ p(y, x) + p(z, y).

We note in passing that writing the TI condition in this form and
writing the MST condition in the form of Eq. (9) makes it transpar-
ent that MST implies TI.

We can write the condition p(z, x) ≤ p(y, x) + p(z, y) as
γ{x,z}(z) + γ̃{x,z}(z)

G + G̃{x,z}
−

γ{x,y}(y) + γ̃{x,y}(y)

G + G̃{x,y}

−
γ{y,z}(z) + γ̃{y,z}(z)

G + G̃{y,z}
≤ 0,

then as
{[γ{x,z}(z) − γ{x,y}(y) − γ{y,z}(z)]G + [γ{x,z}(z) − γ{x,y}(y)]G̃{y,z}

+ [γ{x,z}(z) − γ{y,z}(z)]G̃{x,y}}G − [γ{x,y}(y) + γ{y,z}(z)]GG̃{x,z}

+ γ{x,z}(z)G̃{x,y}G̃{y,z} − γ{x,y}(y)G̃{x,z}G̃{y,z} − γ{y,z}(z)G̃{x,z}G̃{x,y}

+ γ̃{x,z}(z)(G + G̃{x,y})(G + G̃{y,z})

− γ̃{x,y}(y)(G + G̃{x,z})(G + G̃{y,z})

− γ̃{y,z}(z)(G + G̃{x,z})(G + G̃{x,y}) ≤ 0.
We can express the three quantities in brackets in the first line as

γ{x,z}(z) − γ{x,y}(y) − γ{y,z}(z) = −

 
{≻ ∈R(T ):x≻z≻y}

γ (≻)



−

 
{≻ ∈R(T ):y≻x≻z}

γ (≻)


−

 
{≻ ∈R(T ):z≻y≻x}

γ (≻)


,

γ{x,z}(z) − γ{x,y}(y) =

 
{≻ ∈R(T ):z≻x≻y}

γ (≻)



−

 
{≻ ∈R(T ):y≻x≻z}

γ (≻)


,

γ{x,z}(z) − γ{y,z}(z) =

 
{≻ ∈R(T ):y≻z≻x}

γ (≻)



−

 
{≻ ∈R(T ):x≻z≻y}

γ (≻)


.

The computations implied by the right hand sides of these three
equations are more numerically robust than those implied by the
left hand sides. This is most obvious in the first case, where the
weights on the right hand side all have the same sign. In the second
two cases, no γ (≻) weights appear in more than one right hand
side sum, so the differences on the right hand sides are extremely
unlikely to bemany orders of magnitude lower than the two terms
in parentheses forming the differences.
C.3.3. Numerically robust checks of Reg
Testing regularity involves testing conditions of the form

PA(x)− PA∪{y}(x) ≥ 0. All other conditions, such as PA(x)− PB(x) ≥

0, for A ⊂ B and |B| − |A| > 1, are redundant, by simple induction.
We can write this condition as

γA(x) + γ̃A(x)

G + G̃A
−

γA∪{y}(x) + γ̃A∪{y}(x)

G + G̃A∪{y}
≥ 0,

or

G

γA(x) − γA∪{y}


+ G


γ̃A(x) − γ̃A∪{y}


+ G̃A∪{y} (γA(x) + γ̃A(x)) − G̃A


γA∪{y}(x) + γ̃A∪{y}(x)


≥ 0.

The first term can be written as

G

γA(x) − γA∪{y}


=


{≻∈R(T ):∀z∈A\{x,y} y≻x≻z}

γ (≻).

The right hand side is more numerically robust because there are
weights appearing in both terms of the left hand side.

C.3.4. Numerically robust checks of MI
The multiplicative inequality consists of conditions of the form

PA∪B(x) ≥ PA(x)PB(x). (10)

Define the complementary probabilities QA(x) = 1 − PA(x),
QB(x) = 1 − PB(x) and QA∪B(x) = 1 − PA∪B(x). We compute these
directly in terms of the γ (≻) and γ̃A(≻)weights to avoid loss of nu-
merical precision when the complementary probabilities are close
to zero.

We test one of four equivalent conditions, according to the val-
ues of PA(x) and PB(x). If PA(x) < 1/2 and PB(x) < 1/2, we check
condition (10). If PA(x) ≥ 1/2 and PB(x) < 1/2, we check

PA∪B(x) − PB(x) + QA(x)PB(x) ≥ 0,

If PA(x) < 1/2 and PB(x) ≥ 1/2, we check

PA∪B(x) − PA(x) + QB(x)PA(x) ≥ 0.

Finally, if PA(x) ≥ 1/2 and PB(x) ≥ 1/2, we check

QA(x) + QB(x) − QA(x)QB(x) − QA∪B(x) ≥ 0.

C.3.5. Numerically robust checks of RR
Each term of (2) is computed as

(−1)|B\A|PB(x) =



(−1)|B\A|
G̃Bγ

c
B (x) − Gγ̃ c

B (x)

G(G̃B + G)
γ̃B(x)/G̃B > 1/2,

(−1)|B\A|
GBγ̃B(x) − G̃γB(x)

G(G̃B + G)
otherwise,

where γ c
B (x) = G − γB(x) and γ̃ c

B (x) = G̃ − γ̃B(x). These comple-
mented versions of the gammaweights are calculated directly as a
sum of primitive gamma weights, not as a difference of sums.
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