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Abstract

We consider the problem of sampling the posterior distribution in univariate non-
linear, non-Gaussian state space models. We propose a new method that updates the
parameter vector θ and the state vector x together as a single block. The proposal
(θ∗, x∗) is drawn in two steps. The marginal proposal distribution for θ∗ is constructed
using approximations of the gradient and Hessian of the log posterior density of θ. The
conditional proposal distribution for x∗ given θ∗ is that described in McCausland (2012).
Computation of the approximate gradient and Hessian requires no simulation. Rather, it
combines computational by-products of the x∗ draw with a modest amount of additional
computation. We compare the numerical efficiency of our posterior simulation with
that of the Ancillarity-Sufficiency Interweaving Strategy (ASIS) described in Kastner
and Frühwirth-Schnatter (2014), using the stochastic volatility model and the panel
of 23 daily exchange rates from that paper. For computing the posterior mean of the
volatility persistence parameter, our numerical efficiency is 4-19 times higher; for the
volatility of volatility parameter, 15-36 times higher.

1 Introduction

We consider stationary univariate state space models with Gaussian states xt,

x1 ∼ N(µ, σ2(1− φ2)−1), xt ∼ N(µ(1− φ) + φxt−1, σ
2), t = 2, . . . , n,

and observations yt with the following conditional independence structure:

p(y1, . . . , yn|x1, . . . , xn) =

n∏
t=1

p(yt|xt).

The yt may be scalars or vectors, and the dimension of yt may vary with t, to accommo-
date mixed-frequency observations or missing data. Any element of yt may be a discrete,
continuous or mixed random variable. There may be functions of yt that are non-random.
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The most common examples are variations on the stochastic volatility (SV) model intro-
duced by Taylor (1982). Some of these variations add flexibility to self-contained SV models,
typically by allowing excess kurtosis in the measurement equation, jumps, or (negative) cor-
relation between returns and the innovation of the state equation. In some variations, SV
models are embedded in more complicated models.

Other examples of state space models include models with time-varying counts or du-
rations. Durbin and Koopman (1997) study counts of deaths of van drivers in Britain;
Frühwirth-Schnatter and Wagner (2006), casualties of pedestrians in Linz; and Jung, Kukuk,
and Liesenfeld (2006), admissions for asthma to a hospital in Sydney. Bauwens and Veredas
(2004), Strickland, Forbes, and Martin (2006) and Strickland, Forbes, and Martin (2008)
study durations between transactions in financial markets.

Several methods for Bayesian posterior simulation in such state state models have been
proposed. Direct methods sample latent states from their conditional posterior distribution.
Sampling may be done one-at-a-time as in Jacquier, Polson, and Rossi (1994); in blocks, as
in Shephard and Pitt (1997), Watanabe and Omori (2004), Strickland, Forbes, and Martin
(2006) or Omori and Watanabe (2008); or all at once, as in McCausland (2012) or Djegnene
and McCausland (2015). Auxiliary mixture methods involve transforming the model into a
linear Gaussian model, approximating any non-Gaussian distributions in the transformed
model by finite Gaussian mixtures. Kim, Shephard, and Chib (1998), Chib, Nardari, and
Shephard (2002) and Omori, Chib, Shephard, and Nakajima (2007) use auxiliary mixture
sampling for various SV models. Stroud, Müller, and Polson (2003) use it for Gaussian, but
non-linear, state space models with state dependent variances; Frühwirth-Schnatter and
Wagner (2006) for state space models with Poisson counts; and Frühwirth-Schnatter and
Frühwirth (2007) for logit and multinomial logit models. (WJM: update this review.)

Numerical efficiency varies greatly across posterior simulation methods. Since there
is often a great deal of posterior autocorrelation in x, and much posterior dependence
between θ and x, it helps to update sequences of state values together in the same Gibbs
block and to update parameters and states together. At the same time, the larger the
block, the more difficult it is to approximate non-standard distributions. So, for example,
a multivariate normal distribution is adequate for direct sampling of blocks of 20-50 state
values, but not for the complete observed sequence x. McCausland (2012) and Djegnene
and McCausland (2015) provide an approximation of p(x|θ, y) for generic state space models
that is not multivariate normal and that proved highly efficient for drawing x in a single
block. Auxiliary mixture models yield Gaussian x when one conditions on discrete mixture
component indicators, and x can be drawn as a single block here too.

There have been previous attempts to draw θ and x together in a single block. For
the Taylor SV model, Kim, Shephard, and Chib (1998) draw θ and x together, conditional
on mixture component indicators, in what they call an “integration sampler” because x is
marginalized out to draw parameters. Chib, Nardari, and Shephard (2002) analyse several
SV models using a sampler in which x is marginalized out to draw µ, φ, σ and other
parameters. McCausland (2012) draws parameters and x together, directly, as as single
block in many state space models. One application replicates the analysis in Chib, Nardari,
and Shephard (2002) of a 6-parameter Student’s t SV model, the model from that paper
with the highest Bayes factor for a sample of size n = 8851 of S&P 500 stock index returns.
For the posterior sample mean of φ, Chib, Nardari, and Shephard (2002) achieve a numerical
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efficiency of 0.19 and McCausland (2012), 0.61. For the posterior sample mean of σ, the
efficiencies are 0.10 and 0.87, respectively.

In all these cases, the SV model is a self-contained model for a single return series, not
embedded in a larger model. This makes it easy to precompute the shape of the posterior
distribution of parameters when x is marginalized out.

When the SV model is embedded in a larger model, the shape of this posterior distri-
bution is a moving target. In part because of this issue, it is often desirable to update
parameters and x—and mixture component indicators, if any—in separate Gibbs blocks.
Kastner and Frühwirth-Schnatter (2014) do this as efficiently as possible by interleaving
draws of two different parameterizations of θ to ensure that the update of θ is close to a
pure Gibbs draw.

Our contribution is a method to draw parameters and states together, but in a way
that does not rely on any pre-computation. Instead, it is based on computations of the
local shape of the posterior distribution of parameters, with x marginalized out. The result
is a sampler that is much more numerically efficient than that of Kastner and Frühwirth-
Schnatter (2014) and not much less efficient than that of McCausland (2012), which does
rely on pre-computing the shape of the posterior distribution of parameters.

We describe our new method in Section 2. We demonstrate it in Section 3, comparing
its numerical efficiency with those of competing methods. We conclude in Section 4. The
long and tedious work required to derive good approximations of the gradient and Hessian
of the log posterior density of θ is relegated to the appendices. Once this is out of the way,
the rest is quite simple.

2 Joint sampling of states and parameters

Our new simulation method takes advantage of close approximations of the gradient and
Hessian of the log posterior density log p(θ|y), where x has been marginalized out. The
gradient and Hessian give a good idea of the shape of p(θ|y) at any point θ, allowing us to
draw well targeted proposals of θ.

We describe our new methods in four parts. First, we describe a parameterization θ of
the latent state process x that makes p(θ|y) well enough approximated by a Gaussian dis-
tribution. We then describe how we use the approximate gradient and Hessian of log p(θ|y)
to propose a candidate value θ∗. We then describe how we use the HESSIAN method to
propose a candidate value x∗. Finally, we describe the Metropolis Hastings accept/reject
decision that is applied to the joint proposal (θ∗, x∗).

2.1 Parameterizations

We will use two different parameterizations of the latent state process. One, ψ, is useful for
computing analytic expressions. The other, θ, is useful for posterior simulation.

Let ψ ≡ (ω, φ, µ), where ω = σ−2, the precision of the state innovation. Since ω appears
linearly in the quadratic (in x) term of log p(x|θ), it is more convenient to work with than
σ2. However, the log posterior density ln p(ψ|x) is not well approximated by a quadratic in
ψ. For one, its support is not R3; ψ lies in the space Ψ ≡ [0,∞] × (−1, 1) × R, and the φ
parameter often has considerable posterior mass near the boundary of its support.
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We prefer a parameterization whose log posterior density more closely resembles a
positive definite quadratic function. This is for numerical efficiency, as it lets us bet-
ter target the posterior density with a Gaussian approximation. With this in mind, let
θ ≡ (lnω, tanh−1 φ, µ). The transformation θ(ψ) maps the parameter space Ψ to R3. We
will use θ for posterior simulation, but we will need to transform θ back to ψ in order to
evaluate p(x|ω, φ, µ). The reverse transformation is (ω, φ, µ) = ψ(θ) = (eθ1 , tanh θ2, θ3).

2.2 Drawing the proposal θ∗

The marginal proposal distribution for θ∗ is based on a second order Taylor expansion of
the log target density log p(θ|y). The approach here is similar to that described in Robert
and Casella (2010).

Let gθ|y(θ) and Hθ|y(θ) be the gradient and Hessian of the log target density. We can
write

gθ|y(θ) = gθ(θ) + gy|θ(θ) and Hθ|y(θ) = Hθ(θ) +Hy|θ(θ),

where gθ(θ) and Hθ(θ) are the gradient and Hessian of the log prior density p(θ); and gy|θ(θ)
and Hy|θ(θ) are the gradient and Hessian of log p(y|θ) with respect to θ.

Unfortunately, gy|θ(θ) and Hy|θ(θ) are not available. Instead, we use approximations

g̃y|θ(θ) and H̃y|θ(θ), described in Appendix A. This gives the following approximations of
the gradient and Hessian of the log target distribution:

g̃θ|y(θ) = gθ(θ) + g̃y|θ(θ) and H̃θ|y(θ) = Hθ(θ) + H̃y|θ(θ).

Now let (θc, xc) denote the current value of the parameter and state vectors in the
MCMC chain. The values g̃y|θ(θc) and H̃y|θ(θc) will already be available from previous
computations, as we will see.

Given the current value θc, we draw the proposal θ∗ according to

θ∗|θc ∼ N(θc −
1

2
γH̃θ|y(θc)g̃θ|y(θc),−γH̃θ|y(θc)

−1),

and evaluate the prior density p(θ∗) and the log proposal density q(θ∗|θc). Since H̃θ|y(θ)
depends on θ, we have to be careful not to ignore the normalization factor of q(θ∗|θc).

The factor γ is present for robustness. Without it, numerical efficiency would be much
lower: when θc is very far from its posterior mode, the gradient g̃θ|y(θc) is large, the mean

of the proposal is far from θc, and the Hessian H̃y|θ(θ
∗) may be quite different from H̃y|θ(θc)

A consequence is that the acceptance probability may be extremely low. This situation is
most likely to occur during a burn-in period where values of various variables may in regions
of low posterior density.

Multiplying the Hessian matrix by γ reins in excessively large proposals. We use the
following multiplier

γ = coth

(
3 + 2

√
6

−g̃θ|y(θ)H̃−1θ|y (θ)g̃θ|y(θ)

)
,

where coth is the hyperbolic cotangent. The function coth(1/x) is a “soft” min(x, 1), with-
out a kink. The maximum value of γ(−g̃θ|y(θ)H̃−1θ|y (θ)g̃θ|y(θ)) is 3 + 2

√
6, two standard
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deviations above the mean of a χ2(3) random variable. (WJM: explain why this makes
sense, why it is scale invariant, how it might generalize to θ with more elements than
three.)

2.3 Drawing the proposal x∗|θ∗

We use the HESSIAN method to draw x∗ from a close approximation q(x∗|θ∗, y) to the
conditional posterior distribution p(x∗|θ∗, y) and to compute the proposal density q(x∗|θ∗, y)
We also compute p(x∗|θ∗) and p(y|x∗),

Using a modest amount of additional computation, described in the appendices, we can
also compute g̃y|θ(θ

∗) and H̃y|θ(θ
∗) at the same time. We need these to evaluate the reverse

proposal density q(θc|θ∗). In the event that the proposal (θ∗, x∗) is accepted, the values of
g̃y|θ(θ

∗) and H̃y|θ(θ
∗) can be kept for the next iteration.

2.4 Joint accept-reject

We then compute the reverse proposal density q(θc|θ∗) using g̃y|θ(θ
∗) and H̃y|θ(θ

∗), and
accept (θ∗, x∗) with probability

min

[
1,
p(θ∗)p(x∗|θ∗)p(y|x∗)q(θc|θ∗)q(xc|θc, y)

p(θc)p(xc|θc)p(y|xc)q(θ∗|θc)q(x∗|θ∗, y)

]
.

3 Results

3.1 Stochastic volatility

We apply our methods to daily exchange rate data for 23 currencies, from January 3rd, 2000
to April 4, 2012. The data, from the European Central Bank, are those used by Kastner and
Frühwirth-Schnatter (2014) in their empirical application. We compute 3139 log returns
using exchange rates against the Euro observed on 3140 consecutive trading days.

We use the following prior for θ:

θ ∼ N

 3.6
2.5
−10.5

 ,
1.25 0.5 0

0.5 0.25 0
0 0 0.25

 .

The prior is based on independent priors for tanh−1 φ and logω(1−φ2). We do this because
in practice, the unconditional precision ω(1 − φ2) of xt covaries less with φ than does the
conditional precision ω, across financial return series. (WJM: Confirm and document this,
using a more extensive collection of results.) Results (including efficiency) are fairly robust
to setting the covariance Cov[θ1, θ2] to zero.

Table 1 illustrates the results. For each currency, and the three parameters σ, φ and
µ, we report the posterior sample mean and standard deviation, as well as the relative
numerical efficiency for the posterior sample mean. The relative numerical efficiency is the
ratio of the numerical variance of the mean of an iid sample to the numerical variance of
the posterior sample mean. It is the reciprocal of the inefficiency factor used by Kastner
and Frühwirth-Schnatter (2014) and others. We estimate the numerical variance of our
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Currency E[σ|y] sd[σ|y] rne × E[φ|y] sd[φ|y] rne × E[µ|y] sd[µ|y] rne

Australian dollar 0.155 0.021 0.33 31.9 0.981 0.006 0.18 12.5 -10.26 0.17 0.18
Canadian dollar 0.077 0.015 0.25 29.5 0.993 0.004 0.09 8.4 -10.12 0.25 0.15
Swiss franc 0.202 0.019 0.23 16.8 0.986 0.004 0.18 5.9 -12.01 0.27 0.26
Czech koruna 0.260 0.032 0.21 20.6 0.960 0.010 0.18 12.8 -11.50 0.12 0.23
Danish krone 0.409 0.040 0.23 16.5 0.912 0.017 0.19 11.0 -18.07 0.09 0.21
UK pound sterling 0.098 0.012 0.37 32.3 0.993 0.002 0.20 7.9 -10.84 0.28 0.20
Hong Kong dollar 0.064 0.010 0.35 26.2 0.996 0.002 0.13 4.7 -10.16 0.32 0.18
Indonesian rupiah 0.208 0.032 0.24 34.7 0.974 0.009 0.18 20.9 -9.86 0.16 0.15
Japanese yen 0.114 0.015 0.30 27.1 0.991 0.003 0.16 7.7 -9.95 0.26 0.22
Korean won 0.135 0.016 0.26 20.8 0.989 0.004 0.19 7.7 -10.03 0.24 0.25
Mexican peso 0.153 0.020 0.34 29.3 0.982 0.006 0.18 11.0 -9.76 0.16 0.20
Malaysian ringgit 0.074 0.012 0.33 29.3 0.994 0.003 0.11 6.3 -10.28 0.27 0.17
Norwegian krone 0.165 0.021 0.25 19.2 0.976 0.007 0.16 8.4 -11.14 0.14 0.22
New Zealand dollar 0.155 0.027 0.30 40.0 0.974 0.010 0.15 17.5 -10.01 0.13 0.13
Philippine peso 0.133 0.021 0.27 43.4 0.983 0.007 0.12 15.1 -10.11 0.16 0.10
Polish zloty 0.181 0.020 0.37 25.3 0.979 0.006 0.22 9.5 -10.42 0.17 0.22
Romanian leu 0.299 0.025 0.30 18.0 0.972 0.006 0.29 9.3 -11.08 0.20 0.22
Russian rouble 0.143 0.016 0.24 20.0 0.990 0.003 0.17 6.4 -10.62 0.27 0.23
Swedish krona 0.108 0.012 0.27 16.4 0.992 0.002 0.16 3.6 -11.33 0.28 0.22
Singapore dollar 0.067 0.010 0.32 31.9 0.996 0.002 0.17 8.2 -10.58 0.35 0.22
Thai baht 0.115 0.018 0.29 26.4 0.987 0.005 0.12 7.8 -10.17 0.18 0.15
Turkish lira 0.302 0.025 0.25 17.2 0.962 0.008 0.21 8.9 -9.78 0.15 0.25
US dollar 0.064 0.010 0.39 29.2 0.996 0.002 0.16 6.0 -10.14 0.32 0.19

Table 1: Posterior mean, standard deviation and numerical efficiency for the SV model and
ECB exchange rate data.

posterior sample means using the overlapping batch means method—see Flegal and Jones
(2010).

For σ and φ parameters, we also report the number of times more efficient the posterior
sample means are, compared to those reported by Kastner and Frühwirth-Schnatter (2014).
For computing the posterior mean of σ, our numerical efficiency is 15-36 times higher; for
φ, 4-19 times higher.

For the µ parameter, numerical efficiency is high, although slightly lower than that re-
ported by Kastner and Frühwirth-Schnatter (2014). Given that the conditional posterior
distribution of µ, (i.e. µ|φ, σ, x, y) is Gaussian, the numerical efficiency for µ and higher mo-
ments could easily be greatly improved through antithetic sampling or Rao-Blackwellization.

3.2 High frequency counts with diurnal patterns.

WJM: to complete.
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3.3 Stochastic volatility factors.

WJM: to complete.

4 Conclusions

With modest additional computation, we can compute approximations of the gradient and
Hessian of log p(θ|y) in univariate non-linear non-Gaussian state space models. This allows
us to construct a one-block posterior sampler for (θ, x).

In an empirical application, we show that the approximation is good enough to achieve
high numerical efficiency for the 23 return series we investigate.

A Computing approximate gradient and Hessian of log p(y|θ)
Our objective is to compute approximations to the following gradient and Hessian:

gy|θ(θ) ≡
∂ log p(y|θ)

∂θ
, Hy|θ(θ) ≡

∂2 log p(y|θ)
∂θ∂θ>

.

We will use the exact result, proved in Appendix B, that

gy|θ(θ) = Ex|θ,y[gx|θ(θ)] and Hy|θ(θ) = Ex|θ,y[Hx|θ(θ)] + Varx|θ,y[gx|θ(θ)],

where

gx|θ(θ) ≡
∂ log p(x|θ)

∂θ
, Hx|θ(θ) ≡

∂2 log p(x|θ)
∂θ∂θ>

.

We first compute exact expressions for gx|θ(θ) and Hx|θ(θ). Then we compute exact ex-
pressions for their means. Then we use approximate distributions for x|θ, y to approximate
these means. Finally, we compute an approximation of the variance of gx|θ.

A.1 Computing gx|θ(θ) and Hx|θ(θ)

First decompose log p(x|ψ) = k + L(ψ), where

k ≡ n

2
(lnω − ln 2π) +

1

2
ln(1− φ2)

and

L(ψ) = −ω
2

[
(1− φ2)(xn − µ)2 +

n−1∑
t=1

[(xt − µ)− φ(xt+1 − µ)]2

]
.

We will compute all first and second order partial derivatives of L(ψ) with respect to ω,
φ and µ.

First order partial derivatives:

∂L(ψ)

∂ω
= −1

2

[
(1− φ2)(xn − µ)2 +

n−1∑
t=1

[(xt − µ)− φ(xt+1 − µ)]2

]
.
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∂L(ψ)

∂φ
= ω

[
n−1∑
t=1

(xt − µ)(xt+1 − µ)− φ
n−1∑
t=2

(xt − µ)2

]

∂L(ψ)

∂µ
= ω(1− φ)

[
(x1 + xn − 2µ) + (1− φ)

n−1∑
t=2

(xt − µ)

]
Second order partial derivatives:

∂2L(ψ)

∂ω2
= 0,

∂2L(ψ)

∂φ2
= −ω

n−1∑
t=2

(xt−µ)2,
∂2L(ψ)

∂µ2
= −ω

[
2(1− φ) + (n− 2)(1− φ)2

]
,

∂2L(ψ)

∂ω∂φ
=

1

ω

∂L

∂φ
,

∂2L(ψ)

∂ω∂µ
=

1

ω

∂L

∂µ
,

∂2L(ψ)

∂φ∂µ
= −ω

[
(x1 + xn − 2µ) + 2(1− φ)

n−1∑
t=2

(xt − µ)

]
Now we compute gradient and Hessian of L(ψ(θ)) with respect to θ, the vector of

transformed parameter values. We can write

∂L(ψ(θ))

∂θ
=
∂L(ψ)

∂ψ

∂ψ

∂θ

∂2L(ψ(θ))

∂θ2i
=
∂2L(ψ)

∂ψ2
i

(
ψ′i(θi)

)2
+
∂L(ψ)

∂ψi
ψ′′i (θi)

For i 6= j,
∂2L(ψ(θ))

∂θi∂θj
=
∂2L(ψ(θ))

∂ψi∂ψj
ψ′i(θi)ψ

′
j(θj)

The first two derivatives of ω = exp(θ1) with respect to θ1 are

ψ′1(θ1) =
∂ω

∂θ1
= exp(θ1) = ω, ψ′′1(θ1) =

∂2ω

∂θ21
= exp(θ1) = ω,

and the first two derivatives of φ = tanh θ2 with respect to θ2 are

ψ′2(θ2) =
∂φ

∂θ2
= 1−tanh2 θ2 = 1−φ2, ψ′′2(θ2) =

∂2φ

∂θ22
= −2 tanh θ2(1−tanh2 θ2) = −2φ(1−φ2).

The gradient with respect to θ is

∂L(ψ(θ))

∂θ
=


−ω

2

[
(1− φ2)(xn − µ)2 +

∑n−1
t=1 [(xt − µ)− φ(xt+1 − µ)]2

]
ω(1− φ2)

[∑n−1
t=1 (xt − µ)(xt+1 − µ)− φ

∑n−1
t=2 (xt − µ)2

]
ω(1− φ)

[
(x1 + xn − 2µ) + (1− φ)

∑n−1
t=2 (xt − µ)

]


The elements of the Hessian are

∂2L(ψ(θ))

∂θ21
=
∂L(ψ(θ))

∂θ1
,
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∂2L(ψ(θ))

∂θ22
= (1− φ2)2∂

2L(ψ)

∂φ2
− 2φ(1− φ2)∂L(ψ)

∂φ
= (1− φ2)

[
(1− φ2)∂

2L(ψ)

∂φ2
− 2φ

∂L

∂φ

]
∂2L(ψ(θ))

∂θ23
=
∂2L(ψ)

∂µ2
.

∂2L(ψ(θ))

∂θ1∂θ2
= (1− φ2)∂L(ψ)

∂φ
=
∂L(ψ(θ))

∂θ2
.

∂2L(ψ(θ))

∂θ1∂θ3
=
∂L(ψ)

∂µ
=
∂L(ψ(θ))

∂θ3
.

∂2L(ψ(θ))

∂θ2∂θ3
= (1− φ2)∂

2L(ψ)

∂φ∂µ
.

The log normalizing factor k = n
2 (lnω− ln 2π) + 1

2 ln(1− φ2) also depends on θ. Noting
that θ1 = lnω, we have

∂k

∂θ1
=
n

2
,

∂2k

∂θ21
= 0.

Then
∂k

∂θ2
= (1− φ2)∂k

∂φ
= (1− φ2)1

2

−2φ

(1− φ2)
= −φ,

∂2k

∂θ22
= (1− φ2) ∂

∂φ

∂k

∂θ2
= −(1− φ2).

A.2 Computing the mean of gx|θ(θ) and Hx|θ(θ)

We express the mean of L and its derivatives in terms of the decomposition xt ≡ ct + et,
where ct ≡ E[xt|θ, y] and et ≡ xt − ct.

Here we just take the mean of gx|θ(θ) and Hx|θ(θ) with respect to the distribution x|θ, y,
component by component. For the rest of this section, we will suppress conditioning on θ
and y so that, for example, E[x] denotes E[x|θ, y].

This gives

E

[
∂L(ψ(θ))

∂θ1

]
= −ω

2

[
(1− φ2)[(cn − µ)2 + E[e2n]] +

n−1∑
t=1

(ct − φct+1 − µ(1− φ))2 + E[(et − φet+1)
2]

]

E

[
∂2L(ψ(θ))

∂θ21

]
= E

[
∂L(ψ(θ))

∂θ1

]

E

[
∂L(ψ(θ))

∂θ2

]
= ω(1− φ2)

[
n−1∑
t=1

(ct − µ)(ct+1 − µ) + E[etet+1]− φ
n−2∑
t=2

(ct − µ)2 + E[e2t ]

]

E

[
∂2L(ψ(θ))

∂θ22

]
= −ω(1− φ2)2

[
n−1∑
t=2

(ct − µ)2 + E[e2t ]

]
− 2φE

[
∂L(ψ(θ))

∂θ2

]

E

[
∂2L(ψ(θ))

∂θ1∂θ2

]
= E

[
∂L(ψ(θ))

∂θ2

]
.
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E

[
∂L(ψ(θ))

∂θ3

]
= ω(1− φ)

[
(c1 + cn − 2µ) + (1− φ)

n−1∑
t=2

(ct − µ)

]

E

[
∂2L(ψ(θ))

∂θ23

]
= −ω[2(1− φ) + (n− 2)(1− φ)2]

E

[
∂2L(ψ(θ))

∂θ1∂θ3

]
= E

[
∂L(ψ(θ))

∂θ3

]

E

[
∂2L(ψ(θ))

∂θ2∂θ3

]
= −ω(1− φ2)

[
(c1 + cn − 2µ) + 2(1− φ)

n−1∑
t=1

(ct − µ)

]
To compute exact values of these expressions, we would need to compute all the ct =

E[xt] and the E[e2t ] and the E[(et−φet+1)
2]. In the next section, we develop approximations.

A.3 Computing approximate moments of gx|θ(θ) and Hx|θ(θ)

First, let x◦ = (x◦1, . . . , x
◦
n) be the mode of x|θ, y and ε = (ε1, . . . , εn) ≡ x− x◦. Recall that

we previously defined c ≡ E[x] and e ≡ x− c. This implies that e = ε− E[ε].

A.3.1 Introduce µt|t+1(εt+1) and bt|t+1(εt+1)

Recall that εt = xt − x◦t . All distributions in this appendix are conditional on y and θ,
and the notation for this conditioning will be suppressed. Let µt|t+1(εt+1) ≡ E[εt|εt+1]. Let
bt|t+1(εt+1) be the conditional mode of εt given εt+1. Let vt(εt+1) = εt − bt|t+1(εt+1).

We have the following approximate Taylor expansions of µt|t+1(εt+1) and bt|t+1(εt+1).
Definitions of coefficients are in McCausland (2012), and are already computed as by-
products.

µt|t+1(εt+1) ≈ µt + µ̇tεt+1 +
1

2
µ̈tε

2
t+1 +

1

6

...
µ tε

3
t+1

bt|t+1(εt+1) ≈ bt + ḃtεt+1 +
1

2
b̈tε

2
t+1 +

1

6

...
b tε

3
t+1

Centering to put these functions as polynomials in et+1 gives, for example,

µt|t+1(εt+1) =

(
µt + µ̇tE[εt+1] +

1

2
µ̈tE[εt+1]

2 +
1

6

...
µ tE[εt+1]

3

)
(1)

+

(
µ̇t + µ̈tE[εt+1] +

1

2
E[εt+1]

2

)
et+1

+
1

2
(µ̈t +

...
µ tE[εt+1]) e

2
t+1 +

1

6

...
µ te

3
t+1.

A.3.2 Computing E[εt], E[etet+1] and Var[et]

To compute E[εt], E[etet+1] and Var[et], we first use the laws of total expectation and total
variance to obtain:

E[εt] = E[E[εt|xt+1]], (2)

10



E[etet+1] = E[et+1E[et|xt+1]], (3)

Var[et] = E[Var[et|xt+1]] + Var[E[et|xt+1]]. (4)

By definition, E[εt|xt+1] = µt|t+1, so we have, taking expectations of both sides of (1),

E[εt] =

(
µt + µ̇tE[εt+1] +

1

2
µ̈tE[εt+1]

2 +
1

6

...
µ tE[εt+1]

3

)
(5)

+
1

2
(µ̈t +

...
µ tE[εt+1]) Var et+1 +

1

6

...
µ tE[e3t+1].

Now express the conditional expectation E[et|xt+1] as a third order polynomial in et+1:

E[et|xt+1] = E[εt|xt+1]− E[εt] (6)

= (µ̇t + µ̈tE[εt+1])et+1 +
1

2
µ̈t(e

2
t+1 − E[e2t+1]) +

1

6

...
µ t(e

3
t+1 − E[e3t+1])

Then using (3),

E[etet+1] = (µ̇t + µ̈tE[εt+1]) Var[et+1] +
1

2
µ̈tE[e3t+1] +

1

6

...
µ tE[e4t+1]. (7)

Similarly,

Var[E[et|xt+1]] =

(
µ̇t + µ̈tE[εt+1] +

1

2

...
µ tE[εt+1]

2

)2

Var[et+1] (8)

+

(
µ̇t + µ̈tE[εt+1] +

1

2

...
µ tE[εt+1]

2

)
(µ̈t +

...
µ tE[εt+1])E[e3t+1]

+
1

4
(µ̈t +

...
µ tE[εt+1])

2 Var[e2t+1].

A.3.3 Derivatives of ht ≡ log p(xt|xt+1) with respect to et

Result from McCausland (2012):

h′′1(x1) = −ω(1− φ2) + ψ′′1(x1).

h′′t (xt) = ωφµ′t−1|t(xt)− ω + ψ′′t (xt).

h′′n(xn) = ωφµ′n−1|n(xt)− ω(1− φ2) + ψ′′t (xn),

where

ψ′′t (xt) =
∂ log p(yt|xt, θ)

∂xt

is a computational byproduct of the HESSIAN method. We can write

h′′t (x
◦
t + bt|t+1) = −Σ−1t + ωφ(µt−1|t(bt|t+1)− ȧt−1) + ψ′′t (x◦t + bt|t+1),

where Σt ≡ −(ωφȧt−1 − ω + ψ′′t (x◦t ))
−1 is a by-product of Hessian method computations.
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Using the approximations

µt−1|t(bt|t+1) = µ̇t−1 + µ̈t−1bt|t+1, ψ′′t (x◦t + bt|t+1) = ψ′′t (x◦t ) + ψ′′′t (x◦t )bt|t+1,

we have

h′′t (x
◦
t + bt|t+1) ≈ −Σ−1t + ωφ(µ̇t−1 − ȧt−1) + (ωφµ̈t−1 + ψ′′′t (x◦t ))bt|t+1.

Then approximate

−h′′t (x◦t + bt|t+1)
−1 ≈ Σt

1− ȧt(µ̇t−1 − ȧt−1)− (ȧtµ̈t−1 + ψ′′′t (x◦t )Σt)bt|t+1

≈ Σt[1 + ȧt(µ̇t−1 − ȧt−1) + (ȧtµ̈t−1 + ψ′′′t (x◦t )Σt)bt|t+1]. (9)

We get the following special cases using a similar development, for t = 1 and t = n:

−h′′1(x◦1 + b1|2)
−1 ≈ Σ1[1 + ψ′′′1 (x◦1)Σ1b1|2],

−h′′n(x◦n + bn)−1 ≈ Σn[1 + ȧn(µ̇n−1 − ȧn−1) + (ȧnµ̈n−1 + ψ′′′n (x◦n)Σn)bn].

A.3.4 Computing E[εt], E[Var[et|xt+1]] and E[e3t ]

First, we compute the conditional expectations E[εt|xt+1], Var[et|xt+1] and E[e3t |xt+1], then
we will take expectations again to get the unconditional expectations.

Now let vt ≡ εt − bt|t+1 and δt|t+1 = µt|t+1 − bt|t+1.
We can write εt = vt − (µt|t+1 − bt|t+1) = vt − δt|t+1, and et = vt − (E[εt]− bt|t+1).
We will base calculations on

E[v2t |xt+1] = −h′′t (x◦t + bt|t+1)
−1, E[v3t |xt+1] = 0.

This implies (note that E[vt|xt+1] = δt|t+1)

Var[et|xt+1] = E[(εt − µt|t+1)
2|xt+1] = E[(vt − δt|t+1)

2|xt+1] = −h′′t (x◦t + bt|t+1)
−1 − δ2t|t+1.

(10)

E[e3t |xt+1] = E[(vt − (E[εt]− bt|t+1)
3)|xt+1] (11)

= E[−3v2t (E[εt]− bt|t+1) + 3vt(E[εt]− bt|t+1)
2 − (E[εt]− bt|t+1)

3|xt+1]

= 3h′′t (x
◦
t + bt|t+1)

−1(E[εt]− bt|t+1) + 3δt|t+1(E[εt]− bt|t+1)
2 − (E[εt]− bt|t+1)

3.

A.3.5 Computing the gradient

Start-up, t = n:

1. Set E[εn] = µn.

2. Compute E[e2n] = −h′′n(bn)−1.

3. Compute E[e3n] = (µn − bn)3.
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Iterative step t = n− 1, . . . , 1, where we have E[εt], E[e2t ] and E[e3t ] from the previous step:

1. Compute E[εt] using (5), E[etet+1] using (7), and Var[E[et|xt+1]] using (8).

2. Compute coefficients giving E[e3t |xt+1] in (11) as a polynomial in et+1, take expecta-
tions to get E[e3t ].

3. Compute coefficient giving Var[et|xt+1] in (10) as a polynomial in et+1, take expecta-
tions to get E[Var[et|xt+1]]. Combine this quantity with Var[E[et|xt+1]] using (??) to
obtain E[e2t ].

B Derivation of gradient and Hessian of log p(y|θ)
We can write, for any function q(x) with the same support as p(x|θ)p(y|x),

p(y|θ) =

∫
p(x|θ)p(y|x)

q(x)
q(x) dx.

For convenience, let

wθ(x) =
p(x|θ)p(y|x)

q(x)
,

so that p(y|θ) =
∫
wθ(x)q(x) dx. The notation is meant to evoke an importance weight,

where p(x|θ)p(y|x) is the target and q(x) is the importance distribution. Note that for
q(x) = p(x|θ, y), wθ(x) = p(θ|y) for all values of x.

We can write the gradient of log p(y|ψ) as

∂ log p(y|θ)
∂θ

=
1

p(y|θ)
∂p(y|θ)
∂θ

=
1

p(y|θ)

∫
∂p(x|θ)
∂θ

p(y|x)

q(x)
q(x) dx =

∫ ∂ log p(x|θ)
∂θ wθ(x)q(x) dx∫
wθ(x)q(x) dx

.

Taking the derivative of the second expression, with respect to ψ, yields the Hessian matrix,

∂2 log p(y|θ)
∂θ∂θ>

=
1

p(y|θ)
∂2p(y|θ)
∂θ∂θ>

− 1

p(y|θ)2
∂p(y|θ)
∂θ

∂p(y|θ)
∂θ>

.

We can write the first term as

1

p(y|θ)
∂2p(y|θ)
∂θ∂θ>

=
1

p(y|θ)

∫
∂2p(x|θ)
∂θ∂θ>

p(y|x)

q(x)
q(x) dx

=
1

p(y|θ)

∫ [
∂2 log p(x|θ)
∂θ∂θ>

p(x|θ) +
1

p(x|θ)
∂p(x|θ)
∂θ

∂p(x|θ)
∂θ>

]
p(y|x)

q(x)
q(x) dx

=
1

p(y|θ)

∫ [
∂2 log p(x|θ)
∂θ∂θ>

+
∂ log p(x|θ)

∂θ

∂ log p(x|θ)
∂θ>

]
wθ(x)q(x) dx

We can write the second term as

− 1

p(y|θ)2
∂p(y|θ)
∂θ

∂p(y|θ)
∂θ>

= −∂ log p(y|θ)
∂θ

∂ log p(y|θ)
∂θ>

.
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Putting it together, we have

∂2 log p(y|θ)
∂θ∂θ>

=

∫ [∂2 log p(x|θ)
∂θ∂θ>

+ ∂ log p(x|θ)
∂θ

∂ log p(x|θ)
∂θ>

]
wθ(x)q(x) dx∫

wθ(x)q(x) dx
− ∂ log p(y|θ)

∂θ

∂ log p(y|θ)
∂θ>

.

Note that if we could use q(x) = p(x|θ, y), the weights wθ(x) would not depend on x,
and we would have

∂ log p(y|θ)
∂θ

= Ex|θ,y

[
∂ log p(x|θ)

∂θ

]
,

∂2 log p(y|θ)
∂θ∂θ>

= Ex|θ,y

[
∂2 log p(x|θ)
∂θ∂θ>

]
+ Varx|θ,y

[
∂ log p(x|θ)

∂θ

]
.

Or, in terms of the notation in Section A,

gy|θ = Ex|θ,y[gx|θ], Hy|θ = Ex|θ,y[Hx|θ] + Vx|θ,y[gx|θ].

C Variance of ∂L(ψ(θ))/∂θ1

Let

m ≡


(c1 − µ)− φ(c2 − µ)
(c2 − µ)− φ(c3 − µ)

...
(cn−1 − µ)− φ(cn − µ)√

1− φ2(cn − µ)

 and v ≡


e1 − φe2
e2 − φe3

...
en−1 − φen√

1− φ2en

 .
We want to find the variance of (v+m)>Λ(v+m), where Λ = I. We can use the formula

(assuming “Gaussianity”)

Var[(v +m)>Λ(v +m)] = 2 tr[ΛΣΛΣ] + 4m>ΛΣΛm

= 2 tr[Σ2] + 4m>Σm

≡ 2k1 + 4k2,

where Σ = Var[v].
Note that k1 = tr[Σ2] is the sum of the squared elements of Σ. Now let’s compute the

elements of Σ.
The diagonal elements we already have from (??) and (??). The upper triangular

elements are as follows. For 1 ≤ s < t < n,

Σst = E[(es − φes+1)(et − φet+1)]

= E[((µ̇s − φ)es+1 + us)(et − φet+1)]

= (µ̇s − φ)µ̇s+1µ̇s+2 · · · µ̇t−1(E[e2t ]− φµ̇tE[e2t+1]).

and

Σsn = E[((µ̇s − φ)es+1 + us)
√

1− φ2en]

= (µ̇s − φ)µ̇s+1µ̇s+2 · · · µ̇n−1
√

1− φ2E[e2n].
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The sum of squared upper triangular elements—and by symmetry the sum of squared
lower triangular elements—is

n−1∑
s=1

n∑
t=s+1

Σ2
st = ι>n−1DAz, (12)

where ιn−1 = (1, 1, . . . , 1), D = diag((µ̇1 − φ)2, . . . , (µ̇n−1 − φ)2),

A =


1 µ̇22 µ̇22µ̇

2
3 µ̇22µ̇

2
3µ̇

2
4 . . .

1 µ̇23 µ̇23µ̇
2
4 . . .

. . .

1 µ̇2n−1
1

 =


1 −µ̇22

1 −µ̇23
1

. . .

. . . −µ̇2n−1
1



−1

,

z =


(E[e22]− φµ̇2E[e23])

2

(E[e23]− φµ̇3E[e24])
2

...
(E[e2n−1]− φµ̇2E[e2n])2

(1− φ2)(E[e2n])2

 .
Now v2 = m>Σm = mΦM−1 diag(σ21, . . . , σ

2
n)M−1Φ>m, where

Φ =


1 −φ

1 −φ

1
. . .
. . . −φ

1

 , and M =


1 −µ̇2

1 −µ̇3
1

. . .

. . . −µ̇n−1
1

 .

WJM: write up variances and covariances of other terms.
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