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Abstract

We evaluate the random utility hypothesis by testing an equivalent set of linear
inequalities in choice probabilities. These inequalities, shown to be necessary and
sufficient for random utility by Falmagne (1978), constrain all choice probabilities
on doubleton and larger subsets of the universe of choice objects. We conducted
an experiment in which each of 141 participants chose six times from each of the 26
doubleton and larger subsets of a universe of five lotteries. The lotteries resemble those
in an experiment described in Tversky (1969), whose design was intended to elicit
intransitive cycles in binary choice. We compute Bayes factors in favour of random
utility, versus an alternative with unrestricted choice probabilities, and measure the
sensitivity of these Bayes factors to the choice of prior distribution. We find strong
evidence against random utility for four participants. For most participants, choice
data supports the random utility hypothesis, but the evidence in favour is moderate,
at best. Collectively, the data provide strong evidence for the proposition that a large
majority of participants, but not all, satisfy random utility. Evidence for, or against,
random utility is fairly robust to the choice of prior.
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1. Introduction

Random utility models, such as multinomial logit and multinomial probit, and15

various generalizations of these, such as McFadden (1977)’s Generalized Extreme
Value (GEV) class of models and mixed multinomial logit (MMNL) models, form
the backbone of modern discrete choice analysis. These models have widespread
application across countless choice environments, spanning Economics, Psychology,
Marketing and related fields.20
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Yet random utility is quite restrictive, even disregarding assumptions about func-
tional forms and distributions, which can always be relaxed. Falmagne (1978) demon-
strated that a set of necessary linear inequalities in choice probabilities introduced by
Block & Marschak (1960) is in fact necessary and sufficient for these probabilities to
be generated by some random utility model. McCausland & Marley (2013) demon-5

strate how restrictive these inequalities are by showing that the probability of random
utility holding is very small for a wide range of assumptions—in the form of prior
distributions—about the choice probabilities for a universe of five choice objects.

Moreover, there is some empirical evidence, reviewed below, unfavourable to ran-
dom utility, including observations in some choice environments of an asymmetric10

dominance effect that is inconsistent with random utility.
Given the widespread use of random utility models, given how restrictive they

are, and given the empirical evidence that they are inconsistent with at least some
observed choice behaviour, it is important to better understand when random utility
is a reasonable assumption and when it is not. We do not want to rely on parametric15

random utility models; a poor fit of a particular parametric model does not imply
that random utility does not hold. Nor do we want to limit ourselves to tests of
particular necessary conditions for random utility, such as the condition violated in
the asymmetric dominance effect. In other words, we want to test random utility, no
more and no less.20

Our contribution to date towards this goal has been to put forward a framework
for directly testing random utility and other conditions on choice probabilities using
Bayes factors, in McCausland & Marley (2013) and McCausland & Marley (2014).
Our test is a joint test of precisely the set of linear inequalities identified by Block
& Marschak (1960) that is equivalent to random utility. It is a strong test in the25

following sense: should an individual’s behaviour be consistent with these inequalities
then there exists a random utility model that describes this behaviour well; otherwise,
there is no random utility account of that behaviour.

McCausland & Marley (2014) first applied this framework to analyse data in
Regenwetter et al. (2011) on choices between pairs of lotteries selected from a universe30

of five lotteries. A limitation of these data is that only binary choices are observed;
the full power of our framework requires observations of choices from all doubleton
and larger subsets of the universe. By collecting these choice data, we expose every
implication of random utility to possible falsification. The present paper reports the
results of a new experiment where we do just that; 141 participants each made a35

sequence of choices from all doubleton and larger subsets of a set of five lotteries.
The lotteries are based on those from an experiment described by Tversky (1969),

designed to elicit intransitive choice. Specifically, he tried to induce participants to
choose between two lotteries with similar probabilities on the basis of the prize amount
and to choose between two lotteries with dissimilar probabilities according to expected40

payoff. This heuristic leads to intransitive binary choices and some participants in
his experiment did indeed exhibit such intransitivity. We might also expect choice
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behaviour to be inconsistent with random utility in such an environment.

1.1. Preliminaries

Let T = (x1, . . . , xn) be a universe of choice objects. When faced with a non-
empty choice set A ⊆ T , an agent chooses a single object from A. The probability
that the agent chooses x ∈ A is denoted PA(x). A random choice structure (RCS) is5

the complete specification of the PA(x), x ∈ A ⊆ T , and is denoted P . Let ∆ be the
space of random choice structures consistent with the axioms of probability; ∆ is a
Cartesian product of unit simplexes of various dimensions.

Where there are multiple trials, we assume that the same PA(·) governs every
choice from A and that choices are statistically independent across trials. Following10

others, we refer to these two assumptions together as the iid assumption, but note that
“identically distributed” applies separately to each choice set while “independent” ap-
plies globally. In general, a random choice structure may describe choice probabilities
of an individual or those of an random sample of individuals from a population; since
our experiment involves individual-level choice, our subsequent exposition will focus15

on the former.
In an experiment, we observe choices of a participant over multiple trials. For

every x ∈ A ⊆ T , let NA(x) be the number of times the participant chooses object
x when presented with choice set A. Let N be the vector of all such choice counts
for that participant and n, a possible realization of N . Given a RCS P and the iid20

assumption, the probability mass function Pr[N = n|P ] is a product of multinomial
probability mass functions, one for each choice set.

A random utility model (RUM) for T is a probability space (Ω, µ) and a function
u : T × Ω→ R, where µ is non-coincident, meaning

µ ({ω ∈ Ω: there exist distinct x, y ∈ T, such that u(x, ω) = u(y, ω)}) = 0.

We call u a utility function; its maximization over the available options governs choice25

in state ω. Non-coincidence of µ rules out ties. A RUM for T induces a RCS through
the construction

PA(x) = µ

(
{ω ∈ Ω: u(x, ω) = max

y∈A
u(y, ω)}

)
, x ∈ A ⊆ T.

Whenever a RCS can be induced by a RUM, we say that the RCS satisfies the random
utility hypothesis, or more briefly, satisfies random utility.

Not every RCS satisfies random utility, as a simple demonstration shows: no30

RCS with P{x,y,z}(x) > P{x,y}(x) can be induced by a RUM, since for a RUM, the
event {ω ∈ Ω: u(x, ω) > u(y, ω) and u(x, ω) > u(z, ω)} is a subset of the event
{ω ∈ Ω: u(x, ω) > u(y, ω)}. One way to understand the content of random utility
is to see it as a consistency principle: the probability space does not depend on the
particular choice set presented.35
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Falmagne (1978) shows that an RCS satisfies random utility if and only if for all
non-empty A ⊆ T and all x ∈ A,∑

B : A⊆B⊆T

(−1)|B\A|PB(x) ≥ 0. (1)

A weaker assumption than random utility is regularity, the condition that for
all x ∈ A ⊂ B ⊆ T , PA(x) ≥ PB(x). Still weaker is the triangle inequality, the
condition that for all x, y, z ∈ T , 1 ≤ P{x,y}(x) + P{y,z}(y) + P{x,z}(z) ≤ 2. These two5

conditions are of interest because some of the relevant empirical literature consists of
tests of one or the other. Also, we can use them to provide some insight into random
utility violations: when a RCS fails to satisfy random utility, we can check to see if
regularity or the triangle inequality fails. Luce & Suppes (1965) show that random
utility implies regularity, that regularity implies the triangle inequality, and that the10

two converses are not true.

1.2. Empirical evidence related to random utility

Rieskamp et al. (2006) survey empirical violations of “consistency principles” in
economics. Of the five principles they identify, regularity is the only one necessary
for random utility. Moreover, the asymmetric dominance effect is the only empirical15

evidence against regularity they document. However, this evidence is extensive and
they conclude that the effect is “highly robust.”

The asymmetric dominance effect, introduced by Huber et al. (1982), pertains
to choice environments with three objects: a “target” x, a “competitor” y and a
“decoy”z; x “dominates” z, but y does not; neither x nor y dominates the other. The20

effect occurs when P{x,y,z}(x) > P{x,y}(x). This is a violation of regularity, and thus
random utility.

Several studies, beginning with Tversky (1969), find violations of weak stochastic
transitivity, the condition that for all x, y, z ∈ T , P{x,y}(x) ≥ 1/2 and P{y,z}(y) ≥
1/2 implies P{x,z}(x) ≥ 1/2. A violation occurs when there are distinct x, y and25

z such that P{x,y}(x) ≥ 1/2, P{y,z}(y) ≥ 1/2 and P{x,z}(z) ≥ 1/2, with at least
one strict inequality. We will call such a violation an intransitive cycle. Random
utility is compatible with intransitive cycles—this is essentially the Condorcet voting
paradox. However, it is incompatible with extreme cycles, in the following sense: if
P{x,y}(x) + P{y,z}(y) + P{x,z}(z) > 2, then we also have a violation of the triangle30

inequality and therefore of random utility. Even when binary choice probabilities are
consistent with random utility, the presence of intransitive cycles tightly constrains
the set of non-binary choice probabilities consistent with both random utility and
those binary choice probabilities; see the discussion in McCausland & Marley (2014,
p. 41 and Table 4).35

Some comparisons of random utility models to non-random utility models have
been unfavourable to the former, but the following example shows the need for caution
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in interpreting these results. Chorus (2010) introduced the Random Regret Minimiza-
tion (RRM) model to capture the effect on choice behaviour of the anticipated regret
that an agent may later feel over the options not chosen. Since the set of options not
chosen depends on the choice set, the door is open to violations of random utility. In
simulations, we confirmed that indeed, RRM is inconsistent with random utility for5

suitable parameter values. But we also found that for other parameter values, RRM
is consistent with random utility. The evidence in Chorus (2010) in favour of RRM,
compared with a similarly parameterized logit model, impressive as it may be, cannot
be taken as evidence against random utility.2 This is not only because some RRM
models satisfy random utility, but also because the logit model used for comparison10

is quite restrictive within the class of random utility models.

1.3. Outline

The rest of the paper is organized as follows. Section 2 describes tests of random
utility and other conditions on choice probabilities, using Bayes factors to compare a
constrained model in which the condition holds with an encompassing model where15

probabilities are unrestricted. Section 3 outlines the methods for posterior inference
we use here, taken from McCausland & Marley (2014). Section 4 describes an ex-
perimental design where each participant sees all doubleton and larger subsets of a
universe of five lotteries. Section 5 summarizes what we learn from the data. Section
6 concludes and discusses possible extensions of our work.20

2. Model comparison

Our primary goal is to test random utility and two weaker conditions, regularity
and the triangle inequality, for each of the participants in a discrete choice experi-
ment. Our test consists of a comparison between two models: a constrained model
Mc in which the condition holds and an encompassing model Me where it does not25

necessarily hold. We first define the two models, then describe how they will be
compared and how to interpret the results of the comparison.

The two models share the same probability mass function Pr[N = n|P ], the one
described in Section 1.1, and differ only in terms of the prior distribution of P . The
prior density f(P ) of the encompassing model Me has support ∆, the entire space30

of RCSs; the point of the encompassing model is to be unconstrained. The prior
f(P ) is described in detail below up to the values of hyper-parameters chosen by
the investigator; it has full support ∆ for all values of the hyper-parameters. For
the purposes of prior robustness analysis we will show, later, how our results vary
with the choice of these hyper-parameters. For now, we can think of f(P ) as a fixed35

density for P .

2To be clear, Chorus (2010) does not claim that his evidence against a particular RUM is evidence
against random utility in general.
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The constrained model Mc has a truncated prior. Suppose for definiteness that
the condition we wish to test is random utility. Let Λ be the subset of ∆ where
random utility holds. Thus, a particular RCS P is in Λ if and only if it satisfies (1).
The prior density of the constrained model is the truncation of f(P ) to Λ. Thus, the
support of this prior density is exactly Λ; all random utility models are included and5

all RCSs inconsistent with random utility are ruled out.
We compare the two models using Bayes factors; see Berger (1985) or Bernardo

& Smith (1994) for further reading. The following equation shows a standard de-
composition of the posterior odds ratio in favour of one model for N (here, Mc) over
another (here, Me) as the product of the prior odds ratio and a second factor called10

the Bayes factor:

Pr[Mc|N = n]

Pr[Me|N = n]
=

Pr[Mc]

Pr[Me]
· Pr[N = n|Mc]

Pr[N = n|Me]
. (2)

The decomposition is a simple application of Bayes’ rule. A posterior odds ratio of
4 means that model Mc is four times as probable as model Me in light of data and
prior information; it does not mean that the posterior probabilities of the models are
necessarily 0.8 and 0.2, as there may be other models under consideration. We see15

that the Bayes factor is the same as the posterior odds ratio when the two models are
considered equally probable a priori; given the Bayes factor, it is simple to use (2) to
compute the posterior odds ratio for a value of the prior odds ratio other than one.

The numerator and denominator of the Bayes factor give the marginal likelihoods
of models Mc and Me; the marginal likelihood for any model M is defined as Pr[N =20

n|M ], the marginal probability of N = n according to M ; it can be interpreted as the
out-of-sample prediction record of the model for those data, as it makes no reference
to the unknown quantity P , which has been marginalized out.

The marginal likelihood of the encompassing model Me is

Pr[N = n|Me] =

∫
∆

Pr[N = n|P ]f(P ) dP,

and that of the constrained model Mc is Pr[N = n|Mc] = Pr[N = n|P ∈ Λ,Me]. The25

Bayes factor in favour of the constrained model, versus the encompassing model, is
then the ratio of marginal likelihoods on the left hand side of

Pr[N = n|P ∈ Λ,Me]

Pr[N = n|Me]
=

Pr[P ∈ Λ|N = n,Me]

Pr[P ∈ Λ|Me]
. (3)

Equation (3) is just an application of Bayes’ rule; the right hand side is the ratio
of posterior to prior probabilities of the condition holding in the encompassing model.
The larger the numerator, the more plausible the condition in light of the data. The30

smaller the denominator, the more restrictive the condition is. This is an instance of
a well known and more general observation that Bayes factors “reward” both fit and
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model parsimony. The right hand side of (3) also gives us a useful way of computing
good approximations of Bayes factors; we use Monte Carlo methods, described in
Section 3 below, to compute the numerator and denominator.

2.1. Prior distributions for the encompassing model

The prior distribution we use here for the encompassing model is the same as5

in McCausland & Marley (2014). It is hierarchical, or multi-level: it consists of a
distribution for P , specified up to two unknown scalar parameters α and λ, and a
prior distribution for α and λ, specified up to the values of three hyper-parameters
a1, a2 and b, selected by the investigator. Together, the RCM and the prior give a
joint distribution of α, λ, P and N , indexed by a1, a2 and b.10

The conditional distribution of P given the parameters α and λ is described in
McCausland & Marley (2013). There, P is constructed as a function of more primitive
random variables; choice probabilities are formed by combining global and local (i.e.
pertaining to a particular choice set A) weights on preference orders. While some
marginal distributions are available in closed form—see below—the full joint density15

is not. Full details on the distribution and some of its desirable properties are found
in McCausland & Marley (2013).

The parameter α > 0 governs how nearly deterministic an agent is likely to be
in repeated choices from the same choice set. For low values of α, a random choice
structure drawn from the prior is likely to feature choice probabilities PA(x) close to20

zero or one; for high values of α, they are likely all to be close to 1/|A|. For a given
choice set A = {a1, . . . , a|A|} ⊆ T , the marginal distribution of the vector PA(·) is

(PA(a1), . . . , P (a|A|)) ∼ Di


|A| times︷ ︸︸ ︷

α

|A|
, . . . ,

α

|A|

 , (4)

where Di(·) denotes the Dirichlet distribution—see Forbes et al. (2011).
The parameter λ ∈ [0, 1] governs the degree of dependence of choice probabilities

across choice sets. The relative weights of the global and local weights on preference25

orders are λ and 1 − λ. For λ = 0, each vector (PA(x))x∈A is constructed using
only the local preference weights and the vectors (PA(x))x∈A are therefore mutually
independent across A ⊆ T . For λ = 1, all probabilities are constructed using only
the global preference weights and so the RCS satisfies random utility with probability
one. Since the marginal distributions given by (4) do not depend on λ, λ describes30

only the nature of dependence across choice sets.
Consider the following example, whereA = {x, y, z} ⊆ T . The vectors (PA(x), PA(y), PA(z))

and (P{x,y}(x), P{x,y}(y)) have marginal distributions Di(α/3, α/3, α/3) and Di(α/2, α/2)
respectively, whatever the value of λ. When λ = 0, the two vectors are statistically
independent. When λ = 1, random utility holds with probability one and so the35

probabilities of the events PA(x) > P{x,y}(x) and PA(y) > P{x,y}(y) are zero.

7



We complete the prior specification by providing a bivariate prior distribution for
(α, λ). The two components are a priori independent with distributions

α ∼ Ga(a1 + a2, b), λ ∼ Be(a1, a2), (5)

where Ga(a1 + a2, b) indicates the Gamma distribution with shape and scale param-
eters set to a1 + a2 and b, and Be(a1, a2) indicates the Beta distribution with shape
parameters a1 and a2.5

The prior, and thus the encompassing model, is now fully determined by choosing
values for the hyper-parameters a1, a2 and b. In Section 5, we report and discuss the
values we use for our posterior simulation results and the various alternative choices
of a1, a2 and b we use in our prior sensitivity analysis.

Studies other than McCausland & Marley (2014) have also tested conditions on10

choice probabilities using Bayes factors in favour of a restricted model against an
encompassing model. These are Cavagnaro & Davis-Stober (2014), Davis-Stober
et al. (2015), Myung et al. (2005) and Zwilling et al. (2011). They all used non-
hierarchical priors where choice probability vectors PA(·) are a priori independent
and uniformly distributed. Each of these studies except one investigates conditions15

on binary choice probabilities only; in the binary case, independence corresponds to
λ = 0 and “uniformly distributed” corresponds to α = 2. The exception is Davis-
Stober et al. (2015), who consider ternary choice probabilities, where the three options
are two objects as well as indifference between them.

3. Simulation Methods20

We use simulation methods for two purposes. The primary purpose is computing
Bayes factors, in order to test random utility, regularity and the triangle inequality,
as described in Section 2. A secondary purpose is to obtain posterior distributions
of α and λ, the parameters of the prior described in McCausland & Marley (2013)
that we use here as one level of our hierarchical prior. This allows us to see how25

relevant these parameters are; we have seen that previous studies have used prior
distributions on binary choice probabilities that are uniformly distributed (α = 2)
and a priori independent (λ = 0) across choice sets.

We do both for all the participants in our experiment and nine different prior
distributions; each prior distribution is a different specification of the encompassing30

model, but since all of them have full support on ∆, none of them rules out any RCSs
a priori. The purpose of using multiple priors is to illustrate the sensitivity of our
results to the choice of prior distribution.

To report the Bayes factors in favour of the restriction of P to a given region Λ,
we compute approximations of Pr[P ∈ Λ|N = n,Me] and Pr[P ∈ Λ|Me]; the ratio of35

these is the right hand side of (3). Approximating the prior probability Pr[P ∈ Λ|Me]
is straightforward using Monte Carlo methods. We draw a random sample from the
prior distribution and for each draw determine whether or not P ∈ Λ. Since draws
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are independent and all moments of the indicator function 1Λ(P ) exist, the standard
law of large numbers and central limit theorem apply; the fraction of draws that
satisfy the restriction is a simulation consistent estimator of Pr[P ∈ Λ] and the usual
standard error is a simulation consistent estimator of the standard deviation of this
sample fraction in repeated simulations. To determine whether a restriction holds for5

a given RCS, we use the robust methods described in McCausland & Marley (2013),
to guard against classification errors due to machine rounding error.

We also compute the posterior probability Pr[P ∈ Λ|N = n,Me] using Monte
Carlo, but as we cannot draw P independently from its posterior distribution, we
resort to Markov chain Monte Carlo (MCMC) simulation, and apply a law of large10

numbers and central limit theorem for ergodic processes to obtain numerical standard
errors for the simulation estimator of Pr[P ∈ Λ|N = n,Me]. Note that numerical
standard errors measure variation in repeated simulations. They are not measures of
sampling variation in a repeated data sense, nor of posterior uncertainty; they can be
made arbitrarily small with sufficiently large posterior samples. Posterior simulation15

delivers not just a sample of P from its posterior distribution; it generates a sample of
(P, α, λ) from its joint posterior distribution. We use the posterior samples of α and λ
to approximate posterior moments of these quantities and their simulation standard
errors.

McCausland & Marley (2014) describe all of this in detail, as well as how to20

compute standard errors for the Bayes factor and its logarithm. They also provide
simulation evidence that the methods are conceptually sound and correctly coded,
using methods similar to those described in Geweke (2004).

4. Experimental Design

The experiment took place at the Behavioral Decision Making Lab at the De-25

partment of Psychological Sciences at the University of Missouri. We recruited 141
people, in waves of 81 and 60, to participate in our study, using a campus-wide e-mail
service. In the first wave, we recruited on a first-come first-served basis until 81 par-
ticipants completed the experiment. In this wave, 59 reported their gender as female;
19, as male. Three did not report gender. In the second wave, we recruited the first30

30 female and the first 30 male participants, addressing the gender imbalance of the
first wave. Results varied little across the two waves.

The median age of participants in each of the two waves was 21. All 141 partic-
ipants completed the entire experimental session; no data from any participant was
omitted in our analysis. We also collected demographic information regarding ethnic-35

ity and education level. Seventy-eight participants in the first wave reported ethnicity.
The sample was primarily Caucasian with 64 Caucasian, 4 African-American, 4 Asian,
2 Hispanic and 4 classifying their ethnicity as “other.” All sixty participants in the
second wave reported ethnicity. Here there were 38 Caucasian, 6 African-American,
12 Asian, 1 Hispanic, 2 mixed and 1 other.40
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Seventy-eight participants in the first wave reported their highest education level
attained. Of these, 9 participants reported high school as their highest education level
completed, 1 reported completing the General Education Development (GED) high
school equivalency test, 41 reported “some college,” 3 reported an Associate degree,
4 reported a Bachelor degree, 16 reported “some graduate school” and 4 reported5

a higher degree such as a PhD or JD (Juris Doctor). All sixty participants in the
second wave reported educational attainment. Six reported high school; 26, “some
college”; 2, an Associate degree; 8, a Bachelor degree; 4, “some graduate school”; 13,
a Master degree; and 1, a higher degree.

Each participant completed our experiment in a single session scheduled for one10

hour. Participants started asynchronously, with up to four participating at any one
time. Instruction lasted about two minutes and participants could take as much
time as they wished. The duration of each session was recorded only for the second
wave, where its median was 13 minutes and 19 seconds. Participants used a desktop
computer at the laboratory running E-Prime2 stimulus presentation software, offline.15

The experiment consisted of two types of trials: experimental trials, the objects of
our analysis, and distractor trials, intended to mitigate memory effects. In both cases,
a trial consists of the presentation of a set of lotteries followed by the participant’s
selection of one of the lotteries. Figure 1 illustrates the five lotteries used in the
experimental trials. For a given lottery, the area shaded in blue in the top of the20

pie corresponds to the probability of winning the prize shown above the pie. The
remaining area corresponds to the probability of winning nothing (shown below the
pie). On each trial, participants were asked to click on the pie icon representing the
lottery they preferred. Figure 1 shows the positions of the lotteries when five of them
are presented, as they were seen by the participants. Two- and three-lottery sets were25

presented in a single row. Four-lottery set were presented in two rows of two, forming
a square.

The five lotteries used in the experimental trials were identical to those in Tversky
(1969), except that the prize amounts were updated to 2014 dollar values. When the
lotteries are ordered by increasing probability of winning a prize, the values of the30

prizes are decreasing, with the expected value of the payoff increasing.
The experimental trials consisted of six replications of each of the doubleton and

larger subsets of the five lotteries; there are 25− 1− 5 = 26 such subsets. Thus, each
participant saw 60 doubleton trials; 60 three-item trials; 30 four-item trials; and 6
five-item trials, for a total of 156 experimental trials.35

The position of lotteries in doubleton and three-item trials was balanced: for
example, for each doubleton set of lotteries, a lottery appeared three times each on
the left and right in six trials. Six permutations of position for each of all four-
and five-time choice sets were generated randomly before the experiment began; all
participants saw the same six permutations in each case.40

There were 40 distractor trials interspersed with the 156 experimental trials, for a
total of 196 trials. The distractor lotteries were similar to the experimental lotteries
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in prize magnitude and probability of winning, but distinct from them. Distractor
trials only included distractor lotteries (i.e., they were never mixed with experimental
lotteries) and all the same set sizes (2, 3, 4 and 5 elements) were represented. One
distractor lottery was “dominated” by the other distractor lotteries, in the sense
that it featured the lowest prize and lowest probability of winning; conversely, one5

lottery was “dominating”, in the sense that it featured the greatest prize and highest
probability of winning. Out of 40 distractor trials, the dominated and dominating
lotteries each appear in 11; both appear in 2. These two lotteries were included as
checks to see if participants were making an effort. All participants saw the same 196
choice sets; the order of presentation was random and independent across participants.10

Each participant was compensated $10.00 (U.S. dollars) for participating. In ad-
dition, at the end of the experimental session, a completed experimental trial was
chosen at random—independently across participants—and the lottery that the par-
ticipant selected during that trial was played for real money. Participants were then
compensated accordingly. This additional payment was included to provide a strong15

incentive for participants to respond truthfully. Participants were fully informed of
this payment structure at the beginning of the session.

Figure 1: The full set of five experimental Tversky (1969) lotteries used and an example trial
screen. Each lottery is represented as a pie chart, with the area shaded in blue corresponding to the
probability of winning the prize shown above the pie. The remaining red area corresponds to the
probability of winning nothing. Participants were instructed to click on the lottery they’d prefer to
play in each trial.

See the Supplementary Materials for more information on the experiment. They
include E-Prime2 code, raw data, more details on the experimental design, as well as
recruitment, demographic and consent forms.20
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5. Results

We now analyze the data from the experiment described in the previous section.
We first test the iid assumption that choices are independent across trials and iden-
tically distributed on each choice set, then analyse behaviour on distractor trials.
We then do a detailed posterior analysis for one specification of the encompassing5

model; that is, one specification of the prior hyper-parmeters a1, a2 and b. Finally,
we perform a robustness analysis to document the sensitivity of results to the choice
of these prior hyper-parameters. We provide summary information about numerical
standard errors in the captions of the appropriate figures.

5.1. Results of a test for the iid assumption10

We are assuming that choices are independent across trials, and that the same
choice distribution PA(·) governs every choice from A, A ⊆ T . There are good reasons
to be skeptical of these assumptions; participants may be learning or their attention
may be waning during the course of the experiment.

We took care to attenuate these problems by using an experimental design fea-15

turing a small number of repetitions of each choice set and the presence of distractor
trials to make it more difficult for the participants to recognize individual lotteries.
We also developed a test of these assumptions and applied it to the data from each
individual. Appendix A describes an exact test that we applied to each participant’s
choice data. The test is based on the number of binary choice tasks in which the par-20

ticipant’s choice sequence consisted of one run where only one of the two objects was
chosen followed by one run where only the other object was chosen. The test statistic
is a function of binary choice data only, due to the coarseness of the distribution of
the number of runs in sequences of size six when there are more than two objects.

We computed p-values for all 141 participants and found evidence against the iid25

assumption for only a few. For 12 out of 141 participants (a fraction 0.085), the
p-values were smaller than 0.05; those values were 0.046, 0.034, 0.026, 0.019, 0.018,
0.015, 0.013, 0.0083, 0.0082, 0.0032, 0.00040, and 7.32×10−8. The number of p-values
between 0.01 and 0.05 is 7; the fraction 7/141 = 0.0496 is close to 0.04, the mean
proportion under the iid assumption. The number of p-values less than 0.01 is 5 out of30

141 (a fraction 0.035), with two extremely low values. The participant whose p-value
is 7.32× 10−8 produced exactly one run each of the two available choice objects in all
10 binary choice tasks.

Even for participants who clearly did not make iid choices, it is possible to interpret
tests of random utility. Suppose that a participant behaved according to a regime35

change model, and conformed to a different RUM in each regime. Using count data
for this participant, it would be difficult to distinguish the true regime change model
from a single RUM whose utility distribution was a suitable mixture of the utility
distributions of the various regimes. So even when the iid assumption is not plausible,
we can interpret a rejection of random utility as some kind of context dependence.40
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5.2. Behaviour on distractor trials

Recall that out of the 40 distractor trials that each participant faced, a lottery
dominating all others appeared 11 times, and a lottery dominated by all others ap-
peared 11 times. These counts include two trials where both of these lotteries appear.
For each participant, we counted the number of times V1 that the participant failed5

to choose the dominating lottery (out of 11 opportunities) and the number of times
V2 that the participant chose the dominated lottery.3 Out of 141 participants, 100
never violated monotonicity. Another 25 participants failed to choose the dominat-
ing lottery exactly once and never chose the dominated lottery. Other pairs (V1, V2)
of violation counts that occurred were (2,0) (3 participants); (2,1) (2 participants);10

and (0,1), (1,1), (2,2), (3,0), (3,1), (5,0), (6,6), (9,1), (11,1), (11,7) and (11,11) (one
participant each).

It seems that a large majority of participants were paying attention to the choice
task. Two of the three participants who always failed to choose the dominating lottery
when it was presented in the distractor trials almost always chose the lottery with15

the lowest prize (and highest probability of winning) in the regular trials; in this
respect, their behaviour was similar to that of some participants who never violated
monotonicity. We include all participants in the subsequent analysis.

5.3. Posterior analysis

In Section 2, we defined the encompassing model up to the choice of a prior20

density f(P ) with support ∆. We then described a family of prior densities, indexed
by hyper-parameters a1, a2 and b. For the posterior analysis of this section, we chose
the prior indexed by a1 = 1.2, a2 = 0.4 and b = 0.9375. This is the same choice of
prior as in McCausland & Marley (2014), and corresponds to prior (or model) M7 in
Table 2 below; the other priors in that table are used in the prior robustness analysis25

of Section 5.4 below, and are explained there. Some motivation for the choice of M7

is given in the earlier paper; (a1, a2, b) = (1.2, 0.4, 0.9375) is an interior point in the
region satisfying the constraints described in Section 5.4 below. The prior mean and
standard deviation of α are 1.5 and 1.186; those of λ are 0.75 and 0.340.

For each participant, we generated a posterior sample of size 810 000 and retained30

every 10’th draw after the 10 000’th, for a thinned sample size of 80 000.
We will first report results for each of the 141 individual participants and then go

on to give a simple analysis of the combined data. The data for any one participant
provides limited evidence about random utility; while the evidence against random
utility can be (and for a handful of participants is) strong, any evidence in favour of35

3Classic parametric random utility models (such as the multinomial logit) do not predict a choice
probability of zero for a dominated option except in the limit where all choice probabilities are zero
or one (i.e., in the case of the multinomial logit, the scale is infinite). Bliemer et al. (2015) discuss
estimation issues that arise for experimental designs that include dominated options, and propose a
regret-based formula for the scale in the multinomial logit that eliminates the problems with them.
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random utility is necessarily moderate at best, due to the fact that the Bayes factor
in favour cannot exceed the reciprocal of the prior probability of random utility—
the numerator of the right hand side of (3) is a probability and cannot exceed one.
Looking at the combined data, however, a pattern emerges, one which provides strong
evidence in favour of the proposition that a large majority of participants behave5

consistently with random utility.
Figure 2 shows the posterior probabilities of random utility, regularity and the

triangle inequality, for each of the 141 participants, under prior M7. Here and in other
figures, participants are sorted in descending order of the posterior probability of their
observed choices satisfying random utility. We observe a tight relation between the10

probabilities of regularity and random utility. The former must be at least as great
as the latter since regularity is a necessary condition for random utility. We see that
the fraction of random utility violations that cannot be attributed to violations of
regularity is small and varies little across participants. There is much less covariation
between the posterior probabilities of the triangle inequality and random utility (or15

regularity); two participants with similar posterior probabilities of random utility may
have quite different posterior probabilities of the triangle inequality.

For four participants, the posterior probability of random utility is close to zero.
We computed posterior probabilities (numerical standard errors in parentheses) of
9.1 × 10−4 (1.3 × 10−4), 4.8 × 10−4 (0.8 × 10−4), 1.0 × 10−4 (0.4 × 10−4), 1.3 × 10−5

20

(1.3 × 10−5). These probabilities are measured with large relative numerical error,
implying considerable uncertainty about log Bayes factors for these participants. In
the last case, the posterior probability figure is based on a single draw where random
utility holds, out of a total of 80 000 posterior draws in the thinned sample, so even the
reported standard error for the posterior probability is not very reliable. However, we25

can conclude with confidence that these log Bayes factors in favour of random utility
are less than -4.0, and that the evidence against random utility is at least “strong”
according to the scale of Kass & Raftery (1995)4 for these four participants.

Figure 3 shows similar information, but in the form of log Bayes factors, which
incorporate not only posterior probabilities of the triangle inequalities, regularity and30

random utility, but also their prior probabilities. Recall that the Bayes factor in favour
of one of these conditions, relative to the (unrestricted) encompassing model, is the
ratio of the condition’s posterior and prior probabilities for the encompassing model.
In this figure, we omit results for the four participants, mentioned above, whose
behaviour is very clearly inconsistent with random utility, as their log Bayes factors35

4According to the scale of Kass & Raftery (1995), a log Bayes factor between 1 and 3 gives
“positive” evidence in favour of one model over an alternative model. By the same scale, log Bayes
factors between 0 and 1 provide evidence “not worth more than a bare mention”; those between 3
and 5 provide “strong” evidence and those above 5, “very strong” evidence. Negative values provide
evidence against a model; here, the absolute value gives the relative degree of evidence in favour of
the alternative model.

14
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Figure 2: Posterior probabilities, under M7, of triangle inequality, regularity and random utility for
all participants, sorted by decreasing posterior probability of random utility.

are computed with considerable numerical error. For 115 out of 141 participants, the
log Bayes factor is positive and therefore in favour of random utility; a positive log
Bayes factor is equivalent to the posterior probability of random utility holding in
the encompassing model being greater than the prior probability.

Support for random utility is modest at best for any one participant. Of the 1155

participants with positive Bayes factors, 93 of these Bayes factors are in the range
from 0.0 to 1.0, favourable to random utility but qualified by Kass & Raftery (1995)
as “not worth more than a bare mention.” The 22 log Bayes factors larger than 1.0
are not much larger. Another 17 participants have log Bayes factors between -1.0
and 0.0, which favour the encompassing model slightly; five have log Bayes factors10

between -3.0 and -1.0, constituting “positive” evidence against random utility. We
can compare these log Bayes factors with the maximum possible Bayes factor in
favour of random utility, achieved when the posterior probability of random utility
is equal to one. This maximal Bayes factor is equal to the negative of the log prior
probability of random utility. In simulations, we estimate this value to be 2.815, with15

a numerical standard error of 0.005. Note the asymmetry of the possible evidence:
there is no minimal Bayes factor, because the posterior probability of random utility
can be arbitrarily low.

Also noteworthy is that 100 out of 141 participants have a higher Bayes factor in
favour of random utility than their Bayes factor in favour of the triangle inequality.20

For many participants, the posterior probability of the triangle inequality is close to
one and therefore the log Bayes factor in favour of the triangle inequality is close to
0.742, the negative of the log prior probability. Although it represents weak evidence,
it is the highest possible log Bayes factor in favour of the triangle inequality. Even

15
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Figure 3: Left panel: log Bayes factor in favour of random utility versus log Bayes factor in favour
of triangle inequality, under M7; right panel: log Bayes factor in favour of random utility versus
log Bayes factor in favour of regularity, under M7. Each point corresponds to a participant, with
four outlying participants omitted as explained in the text. In the left (resp. right) panel, the
shaded region is where the Bayes factor in favour of random utility is both positive and greater
than that in favour of the triangle inequality (resp. regularity). The mean and maximum numerical
standard errors for log Bayes factors in favour of the triangle inequality are 0.008 and 0.049; those
corresponding to regularity are 0.022 and 0.109; those corresponding to random utility are 0.023
and 0.110.

though the posterior probabilities of random utility are considerably lower than those
of the triangle equality, the Bayes factor is usually higher. This is possible because
of the much lower prior probability of random utility. Other participants have lower,
but still favourable log Bayes factors in favour of random utility.

The data do remarkably little to discriminate between regularity and random5

utility: the log Bayes factors in favour of both are very similar. Equivalently, the
conditional probability of random utility holding given that regularity holds is much
the same—around 0.73—in both the prior distribution and the posterior distribution,
across participants.

Although our experimental design, and particularly the choice of lottery choice10

objects, is modelled on an experiment designed to elicit violations of weak stochastic
intransitivity, we do not test that condition here. The small number of trials (six)
per binary choice set means the data are not very informative about this condition.
McCausland & Marley (2014) analyzed data from an experiment with similar choice
objects, in which each participant chose twenty times from each doubleton choice set.15

They found that for only two out of eighteen participants, there was evidence strong
enough to be worth mentioning against weak stochastic transitivity. The log Bayes
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factors for those two participants were -1.76 and -3.19; no other participant had a log
Bayes factor less than -1.

Figure 4 illustrates the posterior distributions of α and λ, under prior M7, by
providing information on five posterior quantiles. For each participant, and both
panels, two bars and a point show the posterior quantiles 0.05 (low end of lower bar),5

0.25 (upper end of lower bar), 0.5 (point), 0.75 (lower end of upper bar) and 0.95
(upper end of upper bar). Thus, the interval between the top of the lower bar and the
bottom of the upper bar is the interquartile range and has posterior probability 0.5.
The quantiles 0.05 (resp., 0.95) are values that are very small (resp., very large), but
still plausible. The point gives the median, a reasonable point estimate; it minimizes10

posterior expected absolute value loss.
The upper panel of Figure 4 shows that for many participants, the posterior

distribution of α is largely concentrated in the interval (0, 2) where the binary choice
probability densities have peaks at zero and one5; a large majority of participants have
higher posterior probability inside this range than outside. Binary choice probabilities15

are uniform for α = 2; in the region α > 2, the density is zero at the endpoints 0 and 1.
Thus, it is when α < 2 that choice probabilities are more likely to be near zero or one,
indicating a high degree of choice consistency in repeated presentations of the same
set. While participants with relatively low posterior probability of random utility
tend to have less posterior probability in (0, 2), there are many with distributions20

highly concentrated in this range, including three of the four outlying participants
with the lowest posterior probabilities of random utility.

The lower panel of Figure 4 shows that for a large majority of participants, the
posterior median of λ is larger than the prior mean of 0.75; for most, the posterior
probability that λ exceeds the prior mean is greater than 0.95. In many cases, the25

median or upper quantiles are so close to one that they cannot be seen in the graphic.
As in McCausland & Marley (2014), the data are quite informative about the degree
of dependence of choice probability vectors, as measured by λ, and favour a high
degree of dependence across choice sets, for most participants. The region of high
posterior probability density is far removed from the value λ = 0 that corresponds to30

the priors used in all previous research except McCausland & Marley (2014).
We now compare two models for the combined data of all participants, to measure

the support for the proposition that a large majority of participants satisfy random
utility. In the first model, all participants behave according to the unrestricted en-
compassing model M7. A priori, the parameters α and λ are independently and35

identically distributed across participants. In the second model, each participant ei-
ther satisfies random utility or does not. Each participant is classified as satisfying
random utility with prior probability p and this classification is a priori independent
across participants.

5More generally, n-ary choice probabilities have peaks at the n vertices of the n-simplex for
α ∈ (0, n).
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Figure 4: Posterior quantiles 0.05, 0.25, 0.5, 0.75 and 0.95, under M7, of α (top) and λ (bottom)
by participant, ordered by decreasing posterior probability of random utility. The shaded region in
the top panel is where 0 ≤ α ≤ 2. The shaded region in the bottom panel is where λ is greater than
0.75, its prior mean. The mean and maximum (over quantiles and participants) numerical standard
errors for the quantiles of α are 0.013 and 0.089. Those for the quantiles of λ are 0.005 and 0.015.
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The log Bayes factor log BF (p) in favour of the second model, against the first
model, is estimated in simulations by

̂log BF (p) =
141∑
i=1

log(pB̂F i + (1− p)),

and its numerical standard error σ̂logBF (p) is approximated using the delta method
as

σ̂logBF (p) =

√√√√ 141∑
i=1

(
pσ̂BF ,i

pσ̂BF ,i + (1− p)

)2

,

where B̂F i and σ̂BF ,i are the simulation estimate of the Bayes factor (not log Bayes5

factor) in favour of random utility for participant i and its numerical standard error.
Table 1 shows estimated log Bayes factors in favour of the second model against the
first, with their numerical standard errors, for various values of p.

p l̂og BF(p) σ̂log BF(p)
0.75 54.65 0.21
0.80 56.09 0.23
0.85 57.07 0.25
0.90 57.36 0.27
0.92 57.18 0.28
0.94 56.71 0.29
0.96 55.78 0.30
0.98 53.89 0.32

Table 1: Log Bayes factors ̂log BF(p) in favour of an aggregate model where each participant has
probability p of satisfying random utility, for selected values of p. σ̂log BF(p) indicates the numerical

standard error associated with ̂log BF(p).

Collectively, the data strongly support the second model over the first, for the
values of p in Table 1. This is strong evidence that a large majority of participants,10

but not all, satisfy random utility. The results suggest that the most plausible values
of p are in the range from 0.8 to 0.96; outside this range, Bayes factors are considerably
lower.

5.4. Prior robustness analysis

We have just provided a detailed posterior analysis under the encompassing model15

(or prior) M7. Here we perform a robustness analysis, and report how our results
depend on the specification of the encompassing model, or equivalently, the choice
of prior density f(P ). We compute results for nine different encompassing models,
or priors, indexed M1,M2, . . . ,M9. These are the same as in McCausland & Marley
(2014).20
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Table 2 defines the nine priors and gives selected moments; all have full support
on ∆, so no values of P are excluded. Columns a1, a2 and b give the values of the
hyper-parameters that define the prior. The remaining columns give the prior mean,
variance and standard deviation of α and λ implied by the hyper-parameter values.

All pairs (a1, a2) fall in the region defined by the inequalities a1 + a2 ≤ 2, a1 ≥ 1,5

and a2 > 0, The first inequality ensures that the prior density of α does not have a
value and first derivative equal to zero at α = 0. We do not want to rule out values
of α close to zero a priori. The second ensures that the density of α does not become
infinite at zero. The third is required of a Gamma distribution shape parameter. The
inequalities imply E[λ] ≥ 1/2. In McCausland & Marley (2014), posterior means of10

λ tend to be higher than 1/2 when the prior mean is equal to 1/2, which suggests
that prior means of λ greater than 1/2 are empirically relevant. The nine (a1, a2)
pairs constitute a constellation of points spread out through the region defined by the
three inequalities. The prior M7, which gives the only (a1, a2) pair in the interior of
the region, is the prior used for the analysis of the previous section.15

We set b to maintain a mean value of α equal to 1.5. This ensures that the event
α > 2, implying densities for binary probabilities falling to zero at probabilities equal
to zero or one, is not very probable.

For each participant, we generated a single posterior sample for hyper-parameters
set as in McCausland & Marley (2014) and then used importance sampling to obtain20

results for the various prior distributions of Table 2. Each sample was of size 810 000;
we retained every 10th draw after the 10 000’th, for a thinned sample size of 80 000.

Figure 5 shows log Bayes factors in favour of the various priors, versus the prior
M7 used in the previous section, for each participant. Again, participants are ordered
in descending order of their posterior probability of satisfying random utility, for the25

encompassing model with prior M7. For most participants, log Bayes factors favour
the priors M1, M4, M6, and M9 over prior M7. These are precisely the priors where the
prior mean of λ is greater than it is for prior M7. Conversely, for most participants,
log Bayes factors favour prior M7 over priors M2, M3, M5, and M8, those priors where
the prior mean of λ is less than it is for prior M7. Those participants who do not30

follow this pattern tend to be those whose posterior probability of satisfying random
utility is relatively low.

Figure 6 shows posterior means of α, for each of the nine priors and each partici-
pant. The posterior means are fairly robust to prior specification; there is a lot more
variation among participants than there is across priors. There is somewhat more35

sensitivity to the prior specification when the posterior mean of α is high. The data
for these participants rule out low values of α, but do not discriminate much among
high values of α, implying more prior sensitivity.

Figure 7 shows posterior means of λ, for each of the nine priors and each partici-
pant. Here, there is relatively more variation across priors, compared to the variation40

across participants. For almost all participants and priors, the posterior mean of λ is
greater than the prior mean.
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a1 a2 b E[α] Var[α] σα E[λ] Var[λ] σλ
M1 1.0 0.20 1.2500 1.5 1.875 1.369 0.833 0.076 0.275
M2 1.0 0.60 0.9375 1.5 1.406 1.186 0.625 0.144 0.380
M3 1.0 1.00 0.7500 1.5 1.125 1.061 0.500 0.167 0.408
M4 1.4 0.20 0.9375 1.5 1.406 1.186 0.875 0.067 0.259
M5 1.4 0.60 0.7500 1.5 1.125 1.061 0.700 0.140 0.374
M6 1.8 0.20 0.7500 1.5 1.125 1.061 0.900 0.060 0.245
M7 1.2 0.40 0.9375 1.5 1.406 1.186 0.750 0.115 0.340
M8 1.2 0.80 0.7500 1.5 1.125 1.061 0.600 0.160 0.400
M9 1.6 0.40 0.7500 1.5 1.125 1.061 0.800 0.107 0.327

Table 2: Priors for nine encompassing models, M1 through M9. Columns a1, a2 and b specify the
hyper-parameter values defining the various priors. The remaining columns give moments of α and
λ implied by the hyper-parameter values.

Figure 8 shows the sensitivity of the log Bayes factor in favour of random utility
to the prior specification. For a large majority of participants, all nine log Bayes
factors favour random utility, though to different degrees. The Bayes factor tends
to be higher for those priors assigning a relatively low prior mean to λ. For those
participants where there is evidence against random utility, this evidence is also fairly5

robust to the prior specification.

6. Conclusions

Random utility models are widely used and random utility is quite a restrictive
condition. There is robust evidence of violations of random utility in special circum-
stances, but little is known about how widespread violations are.10

Falmagne (1978) shows that the set of Block-Marschak inequalities in (1) are
necessary and sufficient for random utility. Since every choice probability PA(x)
appears in at least one of these conditions, any test of random utility should use
choice data on all doubleton and larger subsets of the universe of choice objects, to
expose every implication of random utility to possible falsification.15

Experiments where such data are collected are extremely rare. We have collected
our own data, extending an experimental design with binary choices, due to Tversky
(1969), to a design in which all doubleton and larger subsets of the universe are
presented to each participant in the experiment.

We believe we are the first to test random utility by directly testing the full set of20

Falmagne’s conditions using observed choices from all choice sets whose choice distri-
butions are constrained by these conditions. We use a testing ground for evaluating
axioms of stochastic discrete choice developed in two papers: McCausland & Marley
(2013), which introduced a family of prior distribution on random choice structures,
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Figure 5: Log Bayes factors in favour of encompassing models M1,M2, . . . ,M9 against model M7,
by participant. All participants are included and are ordered by decreasing posterior probability of
random utility. The mean and maximum numerical standard errors are 0.004 and 0.062.
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Figure 6: Posterior means of α, by participant, for encompassing models M1,M2, . . . ,M9. All
participants are included and are ordered by decreasing posterior probability of random utility. The
mean and maximum (over models and participants) numerical standard errors are 0.022 and 0.070.
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Figure 7: Posterior means of λ, by participant, for encompassing models M1,M2, . . . ,M9. All
participants are included and are ordered by decreasing posterior probability of random utility. The
mean and maximum (over models and participants) numerical standard errors are 0.002 and 0.012.

and McCausland & Marley (2014), which provided MCMC methods for posterior
inference.

Using the particular data we collected in our experiment, we can draw several
important conclusions. In the distractor trials, most individuals never violated mono-
tonicity and few (15 out of 141) violated monotonicity more than once. This supports5

our assumption that participants are engaged and paying attention. We tested our
assumption that for each individual, choices are statistically independent and re-
peated choices from the same choice set are identically distributed. We find that few
individuals clearly violate this iid assumption.

Our analysis shows the importance of the flexibility of the prior introduced in10

McCausland & Marley (2013), parameterized by α and λ. The posterior distribu-
tions of α demonstrate considerable heterogeneity among participants regarding the
consistency of their choices in repeated presentations of the same choice set. The
posterior distributions of λ give strong evidence in favour of the kind of statistical
dependence among choice distributions that is measured by λ. Recall from Section 215

that previous studies used priors under which the binary choice probability vectors
are mutually independent (λ = 0) and uniformly distributed (α = 2).

Evidence about random utility obtained from the data of a single individual is
limited for two important reasons. First, there are important limitations to attention
in a highly repetitive task. Second, no matter how much data is collected for a20

single individual, the Bayes factor in favour of random utility is bounded above by
the reciprocal of the prior probability of random utility. Even so, we find that six
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Figure 8: Log Bayes factor in favour of random utility, by participant, for encompassing models
M1,M2, . . . ,M9. Participants with Bayes factors, under M7, that are less than -3.0 are excluded;
the rest are ordered by decreasing posterior probability of random utility, under M7. The mean
and maximum (over models and participants) numerical standard errors are 0.017 and 0.191. (All
numerical standard errors are less than 0.1 for participants 1 through 130.)
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observations for each choice subset suffice to yield log Bayes factors in favour of
random utility between 1.00 and 1.25 for 22 participants, compared to the upper
bound of 2.815, and log Bayes factors below -4.0 for 4 other participants. For most
of the remaining participants, log Bayes factors were between -1.0 and 1.0, each one
inconclusive in isolation about the behaviour of the individual in question.5

Although any one participant’s data provide at best moderate evidence in favour
of random utility for that participant, the large majority of participants with positive
Bayes factors provides evidence for the proposition that a large majority of, but not
all, participants satisfy random utility. A simple model comparison exercise for the
combined data quantifies this evidence and finds it to be very strong, with plausible10

values of the proportion satisfying random utility between 0.8 and 0.96.
The striking similarity of Bayes factors in favour of random utility and regularity

show that the data we collected do little to discriminate between the two. We learn
little about the plausibility of the incremental restriction imposed by random utility,
relative to regularity.15

We performed an analysis showing that many of our conclusions are robust to
the choice of prior distribution. In particular, the qualitative conclusions about the
posterior distributions of α and λ do not change. Strong evidence against random
utility remains strong for alternative prior distributions. Evidence in favour of random
utility may be stronger or weaker, according to the prior distribution, but the log20

Bayes factors rarely change sign.
The Bayes factor in favour of random utility tends to be lower for priors where

the prior mean of λ is high. At the same time, Bayes factors favour priors where
the prior mean of λ is relatively high. These two observations suggest that it can
be difficult to distinguish, empirically, between a distribution P |α, λ over random25

choice structures, and the truncation of a second distribution P |α, λ′, with λ′ < λ,
to the region where the Falmagne inequalities hold. The kind of dependence among
choice distributions associated with high values of λ resembles the kind of dependence
induced by truncating a random choice structure to the region where the Falmagne
inequalities hold.30

In future work, we hope to collect and analyse data from a variety of different
choice domains, using an experimental design similar to the one we used here, in
which participants see all subsets of a universe. We hope to test both individual-
and population-level random utility. While these are different empirical questions,
they are related, since if all individuals in a population comply with random utility,35

then so will the population. Population data have two important advantages: the iid
assumption is more plausible, and increasing the sample size by adding participants
does not tax their patience or attention.

Our broader research agenda focusses on abstract choice, as opposed to, for ex-
ample, mapping object characteristics to utility of some kind; our aims are more40

to discover fundamental properties of choice than to find use in applications. Our
simulation methods, which sample a space whose dimension grows faster than ex-
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ponentially in the size of the universe of choice objects, are feasible for universes of
size up to six and perhaps seven. Notwithstanding these points, our methods may be
applicable in certain field experiments, where a large number of decision makers make
consequential decisions from a well defined and limited number of choices. Examples
include the choice of pension, medical and dental plan options, as well as telephone5

and internet packages. Learning about how population choice probabilities and mar-
ket share vary with the set of available options would be useful for the designers of
choice architectures.
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Appendix A. A test for iid trials in a multiple repeated binary choice
experiment

Appendix A.1. Statement of the problem

We wish to construct a frequentist test of the hypothesis of iid trials in an experi-
ment where a single decision maker performs N trials each of I different binary choice20

tasks. In this paper, participants perform N = 6 trials for each of I = 10 doubleton
subsets of the universe. Our proposed test statistic uses run lengths; we consider only
binary choice data due to the coarseness of the distribution of the number of runs in
sequences of size six when there are more than two choice objects.

Let yit ∈ {A,B} be the observed binary choice in trial t ∈ {1, . . . , N} of choice25

task i ∈ {1, . . . , I}. The symbols A and B represent the same pair of objects through
all trials of a choice task. Looking across choice tasks, however, A’s and B’s are not
comparable and there is no reason to suppose that their probabilities are the same.

Within each choice task, trials t = 1, 2, . . . , N are temporally ordered. Choice
tasks, however, are in no particular order. In our experiment, trials from different30

choice tasks are interleaved.
The null hypothesis of interest is that the sequences (yi1, . . . , yiN), i = 1, . . . , I,

are mutually independent and that within each choice task i, binary choices yit,
t = 1, . . . , N , are iid. Of the many possible alternative hypotheses, we consider
the most relevant to be those where the decision maker changes behaviour during35

the experiment, due perhaps to learning or waning attention. Thus we focus on
alternatives predicting a smaller number of runs than the null hypothesis does.

Smith & Batchelder (2008) propose a test of the hypothesis that trials are iid
within a single sequence (I = 1). Their test statistic is the number of transitions
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(from A to B or B to A). Since the number of runs (of A’s or B’s) is always one
greater than the number of transitions, there is no substantive difference between
counting transitions and counting runs. Since the latter is more conventional in the
larger statistical literature, we will count runs here.

Smith & Batchelder (2008) and Dai (2016) derive, respectively, the mean and5

variance of the test statistic under the null hypothesis, as a function of the Bernoulli
probability of choosing A. Dai (2016) uses a Gaussian approximation of the distribu-
tion of the test statistic, with the same mean and variance, to compute p-values.

There are three problems with this approach, all of which are exacerbated when the
number of trials is small. First is the sampling variation associated with estimating10

unobserved Bernoulli choice probabilities. Second is the approximation error in using
a Gaussian approximation instead of the true discrete distribution of the test statistic.
The third arises from the discreteness of the test statistic. Its distribution may
be quite coarse, and in extreme cases there may not be any outcomes sufficiently
improbable under the null to give a non-empty rejection region.15

We eliminate the first two problems by using an exact test. Rather than use an
estimate of the Bernoulli parameter, we condition on the observed proportion of A’s
and B’s and compute all possible values of the test statistic, and their conditional
probabilities under the null hypothesis, without resorting to any approximations. We
mitigate the third problem by testing the joint hypothesis that trials are iid in all I20

choice sequences, based on a test statistic combining the number of runs across choice
tasks. In this way, the distribution of the test statistic under the null hypothesis, while
still discrete, has a larger number of mass points.

Appendix A.2. Proposed test statistic

We define, for j = 0, . . . , bN
2
c,25

• nj, the number of choice tasks, out of I, where the participant chose the symbol
A either j or N − j times.

• cj, the number of choice tasks, out of the nj choice tasks above, that the number
of runs was exactly equal to two.

• pj, the conditional probability, under the hypothesis of iid sequences, that a30

sequence has exactly two runs, given it has j or N − j A’s.

Suppose, for example, N = 6 and I = 10 and we observe the choice sequences
BAABAA, AAAAAA, AAABBB, BBAAAA, BBBAAA, ABABAB, BBABBB,
AABBAA, BAAAAA, BBBBBB. Then n0 = 2, because the second and last se-
quences, and no others, have zero or six A symbols. Similarly, n1 = 2, n2 = 3 and35

n3 = 3. We compute c0 = 0, c1 = 1 (the ninth sequence has two runs), c2 = 1 (the
fourth) and c3 = 2 (the third and fifth).

Appendix A.3 below shows how to compute the exact distribution of the number
of runs, given the number of A’s chosen. We use this to compute the conditional
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probability pj of having exactly two runs, given the number of A’s is j or N − j.
Let’s continue the example where N = 6. The probabilities of two runs given 0, 1,
2, 3, 4, 5 and 6 A’s are 0, 1/6, 1/15, 1/20, 1/15, 1/6 and 0, respectively, which gives
p1 = 1/3, p2 = 2/15 and p3 = 1/10. We see here an illustration of the third problem
mentioned above: when N is small, and we use data from only one choice task, the5

event of having only two transitions is insufficiently improbable to give a non-empty
rejection region for critical values of 5% and 1%.

Thus, our test statistic combines data from all binary choice tasks. Under the null
hypothesis, choices across choice tasks are independent, and so the ci are independent
binomial random variables, with ci ∼ B(ni, pi), j = 1, . . . , bN

2
c.10

We propose the test statistic
∑bN

2
c

j=1 log fB(ci;ni, pi), where fB(·;n, p) is the prob-
ability mass function for the binomial distribution with n trials and probability p.
Its value will be particularly low when the number of sequences with two runs is
improbably high under the null hypothesis. This would happen, for example, if the
participant switched from one simple choice rule to another during the experiment.15

We compute the exact conditional distribution of the test statistic by computing
the probabilities of all possible outcomes of (c1, . . . , cbN

2
c) given (n1, . . . , nbN

2
c).

Appendix A.3. Computing conditional probabilities of the number of runs

Here we compute, under the null hypothesis, the conditional distribution of the
number of runs, given the number of A’s and B’s in a sequence. The probabilities20

pj defined above are the probabilities assigned by this conditional distribution to
the value 2, for various values of the conditioning information. While we only use
the probability of two runs in our test statistic, described above, we provide this
derivation of the full distribution of the number of runs, since it gives the exact
conditional distribution of the test statistic proposed by Smith & Batchelder (2008).25

Suppose we know NA and NB, the number of A’s and B’s, in a given sequence.
There are

(
N
NA

)
distinct patterns with exactly NA A’s and NB B’s, and they have

equal probability under the null hypothesis. Let m(k,NA, NB) be the number of these
patterns with exactly k runs. Of these m(k,NA, NB) patterns, let mA(k,NA, NB) and
mB(k,NA, NB) be the numbers starting with the symbols A and B, respectively.30

If a sequence starts with a run of A’s and has k runs, then kA, the number of runs
of A must be dk

2
e; and kB, the number of runs of B, must be bk

2
c. The number of

such sequences is

mA(k,NA, NB) =

{(
NA−1

d k
2
e−1

)(
NB−1

b k
2
c−1

)
dk

2
e ≤ NA and bk

2
c ≤ NB,

0 otherwise.
(A.1)

Sketch of proof: for j = A,B, the number of kj-tuples of positive run lengths that
add to Nj is, in the terminology of Feller (1950), the number of ways to place kj − 135

bars in the Nj − 1 spaces between stars in a sequence of Nj stars, with at most one
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bar in each space. This number is
(
Nj−1
kj−1

)
. The kA-tuple giving the lengths of the runs

of A and the kB-tuple of lengths of runs of B can be chosen independently.
Exchanging symbols A and B in the derivation of A.1 gives mB(k,NA, NB) =

mA(k,NB, NA). Then m(k,NA, NB) = mA(k,NA, NB) + mB(k,NA, NB), since the
two right hand side counts are of mutually exclusive and exhaustive possibilities.5

Therefore the conditional probability of k runs given NA A’s and NB B’s, under the
null hypothesis, is

Pr[k|NA, NB] =
m(k,NA, NB)(

N
NA

) .
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