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BAYESIAN SPECIFICATION ANALYSIS 

IN ECONOMETRICS 

JOHN GEWEKE AND WILLIAM MCCAUSLAND 

All econometric models are wrong, but some 
are useful. They mirror only certain aspects 
of reality, and these imperfectly. However, in 
complex situations they can provide structure 
and clarity that improve decisions. The pro- 
cess of discovering the reliability with which 
various aspects of reality are accommodated 
in an econometric model is known as spec- 
ification analysis. It is a vital step in learn- 
ing about the properties of a given model, in 
determining whether to use a model in actual 
decision making, and in improving models, 
and thereby, decisions. 

This article outlines the essentials of 
Bayesian specification analysis, as practiced 
using state of the art simulation meth- 
ods. This approach is especially pertinent to 
models used for decision making, because 
Bayesian inference is the econometric corner- 
stone of decision making within the expected 
utility theory on which virtually all mod- 
ern economics is constructed (Friedman and 
Savage; Savage). It is attractive in practical 
work because it is straightforward to apply 
and can be used to study the congruence of 
any complete econometric model with rele- 
vant features of the data. 

This topic has received close attention in 
the Bayesian mathematical statistics litera- 
ture but is less well known among prac- 
ticing applied economists. There are two 
approaches, sometimes combined in various 
ways. The first is to ask: having expressed a 
model, what are its predictions for observ- 
ables, before using data for inference? How 
consistent are these predictions with the 
actual data? The classic exposition of this 
approach is Box, and a recent treatment 

using modern computational techniques is 
Geweke (1999b). Combining the terminology 
of this literature and that of econometrics, we 
use the term predictive specification analysis 
for this approach here. 

The second approach is to ask: having 
expressed a model, and having used the 
observed data for inference about its param- 
eters, what would we predict would happen 
in an independent replication of the observ- 
ables? (In a prediction problem this is similar 
to asking what would happen in the next T 
observations, where T is the size of the orig- 
inal sample.) The event that the replications 
are quite different from what was actually 
observed, for some interesting aspect of the 
data, constitutes the notion of surprise: this 
idea has been developed in a series of impor- 
tant studies including Bayarri and Berger, 
and Guttman. We use the term postpredictive 
specification analysis for this approach. 

Bayesian Analysis 

The concept of a complete model is central to 
Bayesian specification analysis. A complete 
model specifies the distribution of T x 1 vec- 
tor of observable random variables, y E Y, by 
means of a kA x 1 vector of unknown param- 
eters OA OA. Conditional on 0A the proba- 
bility density of the observables is 

(1) p(ylOA, A) 
T 

= I- p(yt I, y,..., yt-, Z, 
OAA). 

t=l 

This function is familiar from non-Bayesian 
analysis - after y is observed, and the 
observed value yo replaces the argument y, 
(1) becomes the likelihood function. 

A complete model includes a prior density 
for the unobservable parameters, P(OA I A). 
The combination of the prior density and the 
density for observables (1) provides the joint 
density of parameters and observables: 

(2) P(OA, y I A) = P(OA I A)p(y I OA, A). 
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This joint distribution is the key to Bayesian 
inference and specification analysis. The 
marginal density for y, 

(3) P(Y A)= p(0OA, yIA)d0A 

is the model predictive density of the observ- 
able y. Conditional on observed y = yo, 

(4) p(OA I y0, A) = P(0A, I A)/p(yo I A) 

the posterior density of the unknown param- 
eter vector OA- 

The third and final component of a com- 
plete model is a vector of interest 

tw. Elements of w may include transformations 
of parameters W = g(0A; A), for example 
the value of returns to scale in a produc- 
tion function. They also include observables 
whose values are not yet known, for example 
W=' = 

(yT+, YT+2, YT+3) in a forecasting prob- 
lem. A complete model provides the density 
p(AO I OA, y, A), 

(5) p(W I A)= f fp(0A, yZA) 
x p(W I OA, y, A) dy d0A, 

and the posterior density of the vector of 
interest is 

(6) p(W 
Iyo,A)=f- 

p(OA 1y0,A) . 
A 

xp(o| I OA, y, A)dOAz 
Expressions like (6) are not immediately 

useful in applications, because the integral on 
the right side typically cannot be obtained 
in closed form. In modern Bayesian analy- 
sis this problem is usually obviated by means 
of a posterior simulator. This is an algo- 
rithm that produces random vectors O• (m = 
1, 2,...) whose distribution corresponds to 
the posterior density (4).1 Simulation from 
the other three distributions, corresponding 
to the prior density p(OA I A), the observables 
density p(y I OA, A), and the vector of interest 
density p(wO I A, y, A) is typically straightfor- 
ward. Taken together, these simulators make 
it possible to generate synthetic random vec- 
tors from each of the above distributions. 

The t-GARCH Model 

The modeling of returns to financial assets 
has emerged as a challenging problem of 
considerable practical importance in recent 
years. The importance stems from such deci- 
sion problems as the pricing of financial 
derivatives like options and strategies for 
avoiding risk such as hedging. In all these 
situations, the distribution of asset returns, 
and in particular the conditional distribution 
of future asset returns, is central to ratio- 
nal decision making. The problem is interest- 
ing, because the distributions in question are 
clearly not normal and do not appear to be 
of any other simple form. There is also strong 
evidence that the spread of distributions, and 
possibly the shape, changes as conditioning 
information evolves. 

A leading model that captures some of 
these characteristics for a single asset return 
is the generalized autoregressive conditional 
heteroskedasticity model (Bollerslev) with 
Student-t shocks (t-GARCH). Denote the 
observable asset return from period t - 1 to 
period t by y, and the variance of y, at time 
t by h,. Given h,, 

(7) y, - t(i, h,; v) 

and variance evolves as 

(8) h, = a + y(y,-i - -V)2 + 
6h,-1. 

So long as Iy+•l <1 the return series {y,} 
is stationary and displays periods of both 
high volatility (large values of (y, - p)2) and 
low volatility (small (y, - pV)2) relative to 
its unconditional variance of a/(1 - y - 8). 
The unconditional distribution of y, is non- 

normal--it displays excess kurtosis, and the 
accompanying "fat tails" in its unconditional 
probability density relative to the normal. 

Predictive Specification Analysis 

The t-GARCH distribution of observables 
does not, alone, constitute a complete model. 
It remains to specify prior distributions, as 
well as a vector of interest. The process of 
predictive specification analysis consists of 
three steps: (1) choosing a vector of inter- 
est that summarizes interesting aspects of the 
data, w; (2) selecting a trial prior distribution; 
and (3) examining the implications of the 
prior distribution for the vector of interest w. 

' These algorithms use varied methods, some quite sophisti- 
cated, to achieve this correspondence. Moreover, the nature of 
the correspondence varies with the simulator. These details are 
beyond the scope of this article, but there are quite a few acces- 
sible surveys and texts, including Chib and Greenberg (1996), 
Gelman, Carlin, Stern, and Rubin (1995), and Geweke (1999a). 
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Table 1. Definition of Vector of Interest 

Preliminary Statistics: 
YT = ZT=I Yt/T ST = T= (Y - YT)2/T 

-(2) tT=1 y/T S(2) = 
T 

(y2- 2))2/T 

w1 First-order volatility T (y2 _ 2)) (y 21 )/(T s(2)) 

02 
Twentieth order volatility 

20 
(y2_ (2))(+20 

-(2) )/(TS(2)) 

0)3 Volatility decay 02/)1 
(04 Excess kurtosis TI (Y - yT)4/T(ST)2 - 3 

(05 Quantile ratio (Y(T) - Y(1))/(Y(3T/4) - Y(T/4)) 

6 Skewness =2t- T)3/T (ST )3/2 

07 Leverage ahead T-1 (Yt - YT)(y21 - (2))/T (ST S(2))1/2 

)s 
Leverage behind -=2( - yT)(2 - )/T (ST S())1/2 

(09 Standard deviation (ST)1/2 

Steps (2) and (3) may be repeated, exper- 
imenting with different prior distributions. 
This process is best described by illustration. 

The outstanding statistical characteristics 
of returns to financial assets tend to be 
changing but persistent volatility, excessive 
leptokurtosis relative to the normal distri- 
bution, and the "leverage" phenomenon in 
which extreme negative returns are more 
likely to presage high volatility than similarly 
extreme positive returns. For some return 
series, the distribution of asset returns is also 
skewed to the left. These characteristics can 
all be captured through transformations 

wo of the observable returns y. The transformed 
observables used in this study, which consti- 
tute the vector of interest, are detailed in 
table 1. 

To illustrate Bayesian specification anal- 
ysis, we shall apply the t-GARCH model 
described in the previous section to the 
daily returns of the Standard and Poors 
500 index used in Ryden, Terasvirta, and 
Asbrink. It extends from January 3, 1928, 
through April 29, 1991, a total of 17,052 
observations. Returns are formed as Yt = 

log(pt/pt_), where pt is the daily index (see 
Ryden, Terasvirta, and Asbrink for complete 
details). Table 2 provides, in the first column, 
the observed values w = wo for this period. 

To interpret these values, consider a model 
for returns that is much simpler than those 
described in the previous section: Yt 
N(pi, U2) i.i.d. The sampling distribution of 
W1, ..., W8 does not depend on the value of [i 
or a2. Therefore the model predictive distri- 
bution of each of w, through os, for a sam- 

ple of size 17,052 (or any other size) will be 
the same no matter what the prior distribu- 
tion of the unknown parameters VL and y2. 
Some quantiles of this distribution are also 
indicated in table 2.2 

The failure of the normal model is strik- 
ingly evident. None of the characteristics of 
the data captured in the functions of interest 
w are consistent with an i.i.d. normal model. 
The observed values of volatility (wo, wo, wo), 
the thickness of the tails of the distribution 
(WO, WO), skewness (wo) and leverage (wo, (o) 
are so improbable as to be impossible for 
practical purposes. 

In the t-GARCH model, as well as in the 
other models considered in this article, the 
model predictive distribution of co depends 
on the prior density p(OA I A) as well as the 
data density (1). This is generally the case, 
as is evident from (2) and (5). It is there- 
fore necessary to specify a proper prior dis- 
tribution for the parameters R, e, y and 8 of 
the t-GARCH model. Given the prior den- 
sity p(OA I A), the simulation OA - p(OA I A) 
followed by - p(y I 0*A, A) and followed by 
the computation of o as indicated in table 1 
(with Y, in place of Yt) produces a single 
drawing from the predictive distribution with 
density (5). Repetition of this process many 
times provides quantiles for the predictive 
density p(w I A). 

The t-GARCH model does not fail in this 
way. Table 3 provides quantiles for the pre- 
dictive density of 

wo 
for a t-GARCH model 

2 These quantiles and those in tables 3 and 4 are based on 1,000 
simulations. 
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Table 2. Predictive Distribution of Vector of Interest Gaussian i.i.d. Model 

Data Median (25%, 75%) (1%, 99%) 

Wo First-order volatility 0.218 0.000 (-0.005, 0.005) (-0.018, 0.018) 
W2 Twentieth order volatility 0.083 0.000 (-0.005, 0.005) (-0.018, 0.018) 
(03 Volatility decay 0.382 0.000 (-1.00, 0.982) (-31.3, 31.9) 
(4 

Excess kurtosis 22.4 -0.001 (-0.026, 0.024) (-0.083, 0.090) 
(5 

Quantile ratio 39.9 5.874 (5.686, 6.089) (5.301, 6.761) 
W6 Skewness x 100 -0.373 0.000 (-0.010, 0.010) (-0.030, 0.030) 
(7 Leverage ahead 0.0312 0.0000 (-0.0052, 0.0053) (-0.0177, 0.0179) 
W8 Leverage behind -0.0752 0.0000 (-0.0051, 0.0052) (-0.0180, 0.0176) 
(9 Standard deviation 0.0115 

Table 3. Predictive Distribution of Vector of Interest t-GARCH Model 

Data Median (25%,75%) (1%,99%) 

(, First-order volatility 0.218 0.334 (-0.187, 0.459) (0.004, 0.718) 
W2 Twentieth order volatility 0.083 0.001 (-0.002, 0.012) (-0.014, 0.244) 
(3 Volatility decay 0.382 0.004 (-0.007, 0.052) (-0.458, 0.935) 
(4 

Excess kurtosis 22.4 17.2 (3.23, 196) (0.634, 3607) 
(s Quantile ratio 39.9 29.88 (14.6, 113) (7.98, 6.0 x 105) 
W6 Skewness -0.004 0.000 (-0.002, 0.002) (-0.204, 0.211) 
(7 Leverage ahead 0.0312 0.000 (-0.027, 0.026) (-0.343, 0.344) 
W8 Leverage behind -0.0752 0.000 (-0.028, 0.027) (-0.350, 0.352) 
(9 Standard deviation 0.0115 0.008 (0.003, 0.025) (0.001, 2266) 

with the prior distribution 

(9) log(a) - N(-12, 2.2) 

(10) (y, , 81 - y - ) ~ Beta(l, 1, 1) 

(11) v-4--X2(4). 

The distribution (10) corresponds to a "flat" 
prior for y and 8 defined on the unit 
simplex {y > 0, 8 > 0, y-+ 8 < 1}. Alterna- 
tives to (10)-for example, Beta distribu- 
tions with somewhat different values of the 
parameters-have distinct but small effects 
on the predictive distribution of w. The 
restriction v > 4 in (11) ensures the existence 
of population conditional fourth moments; 
without this restriction, the sample measures 
of volatility and excess kurtosis, for T = 
17, 052, can become so large as to over- 
flow computer floating point representation. 
Finally, (9) was chosen to bring wo well within 
its support. The quantiles shown in table 3 
indicate that t-GARCH can account for all 
the observed wo. 

This elucidation of the prior density 

p(t ) A) corresponding to a prior distribu- 
tion p(OA I A) is key in choosing prior distri- 
butions; indeed, it is hard to see how else sub- 

jective prior distributions can be elucidated.' 
It also indicates whether the model at hand 
(data density combined with prior density) 
can account for individual wo. But it says 
nothing about whether the model is consis- 
tent with the entire observed vector of inter- 
est. To examine this question it is necessary 
to move to the posterior density (4) and the 
corresponding density of the vector of inter- 
est (6). 

Postpredictive Specification Analysis 

Consider the following, conceptual experi- 
ment. We have observed data y', and the 
corresponding vector of interest &o, in an 
experiment that can be repeated. Then, given 
the complete model A and the data, the pre- 
dicted distribution of the vector of interest w 
over future experiments is indicated by the 
density (6). The observed &o, in the context 
of this distribution, tells us much about the 
model A. An extreme case is p(&oo I yo, A) = 
0. Because coo is computed directly from yO 

SThere is a substantial literature on elicitation of prior distri- 
butions that builds on this fact (see for example Kadane and 
Wolfson 1998). 
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Table 4. Postpredictive Distribution of Vector Interest t-GARCH Model 

Data Median (25%,75%) (1%,99%) 

Wo First-order volatility 0.218 0.474 (0.350, 0.586) (0.101, 0.777) 
W2 Twentieth order volatility 0.083 0.000 (-0.0004, 0.003) (-0.002, 0.132) 
(03 Volatility decay 0.382 0.000 (-0.001, 0.007) (-0.005, 0.256) 
(04 Excess kurtosis 22.4 1312 (712, 2388) (184, 7683) 
(05 Quantile ratio 39.9 1031 (558, 2124) (217, 22940) 
W6 Skewness -0.004 -0.003 (-0.086, 0.082) (-0.522, 0.468) 
(07 Leverage ahead 0.0312 -0.001 (-0.155, 0.146) (-0.534, 0.510) 
W8 Leverage behind -0.0752 0.006 (-0.178, 0.164) (-0.544, 0.553) 
(09 Standard deviation 0.0115 0.028 (0.018, 0.054) (0.010, 0.504) 

this can happen only if p(yo I OA, A) = 0 for 
all 0A in the support of the prior density 
P(OA I A): the observed yo is impossible, and 
hence, p(yo I A) = 0. A less extreme out- 
come is one in which the observed coo is 
implausible, in the sense that p(coo I yo, A) 
is quite small, or in the sense that oo lies 
in the extreme tails of 

p(w• I yo, A); the two 
are usually equivalent.4 Such an outcome is 
a surprise, in the sense that the probability 
of the observed event occurring again in a 
great many repetitions of the experiment is 
quite low. 

Of course time series are not repeated 
experiments. But for a long stationary time 
series with T observations, a nearly equiva- 
lent conceptual experiment is to ask about 
the next T observations instead of the next 
experiment, and the T observations after 
those, and so on. 

Carrying out a postpredictive analysis 
requires little additional effort, given the 
draws 

(Am) 
-- p(OA y, A) from a poste- 

rior simulator. We simply repeat the exercise 
of Section 4, using these 0A~) in place of the 
draws from the prior distribution. 

The results of this exercise for the 
t-GARCH model are shown in table 4. From 
the postpredictive quantiles of w•1, 2, and W3 
we see that the slow rate of decay in the 
autocorrelation function of y2 is inconsistent 
with the t-GARCH specification. (The first 
autocorrelation is predicted to be higher, the 
twentieth lower, and the ratio of the twen- 
tieth to the first is predicted to be much 
lower.) From the postpredictive quantiles of 
w4 and w5, it is evident that the t-GARCH 
model implies tails in the unconditional dis- 
tribution of yt that are in general too thick. 

(The distribution of the excess kurtosis lies 
well above that observed, and the observed 
quantile ratio is in the bottom 1% quantile 
of the postpredictive distribution.) Observed 
skewness and leverage are well within the 
support of the postpredictive distribution, but 
that distribution implies that, in general, we 
should expect sample skewness and leverage 
much greater in magnitude than is, in fact, 
the case. 

The analysis in table 4 presents a series 
of specification problems with t-GARCH. (A 
full exploration of these problems is beyond 
the scope of this article.) An important clue 
is the unsuccessful effort of these models 
to accommodate the slow decay in volatil- 
ity correlations. This leads to high values of 
y + 8: the postpredictive interquartile range 
for the t-GARCH model is (0.9948, 0.9975), 
and the centered postpredictive 98% interval 
is (0.9913, 0.9998). Such models are close to 
being integrated GARCH (IGARCH) mod- 
els; in these models, the observed value of 
yt eventually collapses about its uncondi- 
tional mean, but in the intervening period, 
very large values of lyl typically arise 
(Geweke 1986). This characteristic is evi- 
dent in the postpredictive distribution of the 
largest absolute return in the series; it is 0.228 
in the dataset, whereas for the t-GARCH 
model the median of the postpredictive distri- 
bution of the largest absolute return is 0.929, 
the interquartile range is (0.480, 1.60), and 
the 98% centered interval is (0.298,87.0). 
Some resolution of these difficulties is pro- 
vided by fractionally integrated GARCH 
(FIGARCH) models (Baillie, Bollerslev, and 
Mikkelsen (1996)), whose consideration is 
beyond the scope of this article. 

4 The distinction is far from innocuous, however; see Bayarri 
and Berger (1999). 
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Conclusion 

This example illustrates how Bayesian spec- 
ification analysis can be used to capture the 
implications of models for observables. The 
goal of this analysis is to highlight inconsis- 
tencies between the models and the observed 
data, thus increasing our understanding of 
models and sowing the seeds for the develop- 
ment of better models and improved decision 
making. 
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