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Abstract: We propose a new method for simulation smoothing in state space models with univariate states and

conditional dependence between the observation yt and the contemporaneous innovation of the state equation.

Stochastic volatility models with the leverage effect are a leading example. Our method extends the HESSIAN method

of McCausland [2012], which required conditional independence between yt and the state innovation. Our generic

method is more numerically efficient than the model-specific methods of Omori et al. [2007] — for a stochastic volatility

model with Gaussian innovations — and Nakajima and Omori [2009] — for a model with Student’s t innovations.
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1 Introduction

State space models govern the joint evolution of latent states α = (α1, . . . , αt, . . . , αn)> and observable data y =

(y>1 , . . . , y
>
t , . . . , y

>
n )> given a vector θ of parameters. They are very useful in capturing dynamic relationships,

especially where there are changing, but latent, economic conditions: the states may be unobserved state variables

in macroeconomic models, log volatility in asset markets or time varying model parameters.

Simulation smoothing methods have proven useful for approximating likelihood function values and for

Bayesian posterior simulation. They involve simulating the conditional distribution of states given data and

parameters, which we will call the target distribution. Simulation typically entails importance sampling (IS) or

Markov chain Monte Carlo (MCMC). We show examples of both in Section 3.

State space models with conditional dependence between the observed value yt and the contemporaneous

innovation of the state equation, not just the contemporaneous state αt, are of particular interest. The best

known examples are stochastic volatility models with an asymmetric volatility effect known as the leverage
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effect. In the model introduced by Harvey and Shephard [1996], the latent states αt are log volatilities, given by

α1 = ᾱ+
σ√

1− φ2
u0, αt+1 = (1− φ)ᾱ+ φαt + σut, (1)

and observed returns yt are given by

yt = exp(αt/2)vt, (2)

where the (ut, vt) are serially independent with

u0 ∼ N(0, 1),

ut
vt

 ∼ i.i.d. N

0,

1 ρ

ρ 1

 , (3)

and (σ, φ, ρ, ᾱ) is a vector of parameters. If ρ = 0, yt and the contemporaneous innovation σut are conditionally

independent given αt. When ρ 6= 0, they are conditionally dependent and we call this dependence a leverage

effect.

Others have extended this model. Jacquier et al. [2004] and Omori et al. [2007] consider inference in

stochastic volatility models with leverage and heavy-tailed conditional return distributions. This and other

work has shown convincingly that stochastic volatility models with leverage are more realistic than models

without. Leverage-like effects may be useful in other models as well. There is little reason beyond computational

convenience to rule them out. Feng et al. [2004] show that conditional dependence is more realistic in stochastic

conditional duration models.

Designing inferential methods for such models has proven difficult, however, and methods with high

numerical efficiency have been model-specific. Nine years passed between Kim et al. [1998], introducing the

auxiliary mixture model approach for stochastic volatility models without leverage, and Omori et al. [2007],

extending it to models with leverage.

We extend the HESSIAN method of McCausland [2012], which required models without leverage-like effects.

That method used multiple derivatives of log f(yt|θ, αt) with respect to αt to construct a close approximation

to the target distribution. In models with leverage-like effects, the conditional distribution of yt given α depends

not only on αt but also αt+1. To obtain as good an approximation, we need multiple partial derivatives of

log f(yt|θ, αt, αt+1) with respect to αt and αt+1. Another difficulty is that all non-zero elements of the Hessian

of the log target density depend on α, not just the diagonal elements.

Our method inherits the following features of the original method: First, it involves direct simulation of

states from their posterior distribution using a proposal or importance distribution approximating the target

distribution. This is unlike auxiliary mixture model approaches, in which a model is first transformed into a linear

model, and then any non-Gaussian distributions in the transformed model are approximated by finite Gaussian

mixtures. Kim et al. [1998], Chib et al. [2002], Omori et al. [2007] use this auxiliary mixture model approach
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for stochastic volatility models; Stroud et al. [2003], Frühwirth-Schnatter and Wagner [2006] and Frühwirth-

Schnatter et al. [2009] use it for other non-linear non-Gaussian state space models. Using the direct approach

we avoid model-specific transformations, data augmentation and the need to re-weight or apply additional

accept-reject steps to correct for approximation error.

Second, it involves drawing the entire state sequence as a single MCMC block. This leads to efficiency

improvements when there is posterior serial dependence. We make this possible by constructing a non-Gaussian

approximation of the target distribution that is much closer than any multivariate Gaussian distribution. Many

articles have used multivariate Gaussian proposals to update the state vector, but usually only for about 10–50

observations at a time. These include Shephard and Pitt [1997], Watanabe and Omori [2004], Strickland et al.

[2006], Jungbacker and Koopman [2008] and Omori and Watanabe [2008]. The Efficient Importance Sampling

(EIS) method of Richard and Zhang [2007] features a non-Gaussian draw of the entire state sequence, but since

their approximation of the target distribution is constructed using the random numbers used to draw from it,

EIS estimators of likelihood function values do not have the simulation consistency or lack of simulation bias

that true importance sampling estimators have. See the discussion in McCausland [2012] for more details.

Third, since the approximation is so close, we can draw parameters and states jointly using a proposal

distribution combining our approximation of the conditional posterior distribution of states given parameters

with an approximation of the marginal posterior distribution of parameters. Drawing states and parameters

in a single block leads to further efficiency improvements because of posterior dependence between states

and parameters. Thus we achieve numerical efficiencies comparable to model-specific auxiliary mixture model

approaches featuring joint draws. The examples of Section 3 suggest that our method is even more efficient,

partly because we avoid data augmentation and the need to correct for approximation error. Being able to

draw all parameters and states jointly in an untransformed model also opens up new opportunities — for

importance sampling, variance reduction using randomised pseudo Monte Carlo, and very efficient marginal

likelihood approximations, as we see in Section 3.

Fourth, we construct our approximation of the target distribution in a generic way. The only model-specific

computation is the evaluation of derivatives of the log measurement density. Existing, well tested, and publicly

available generic code uses output of the model-specific computation in order to do simulation smoothing for that

model. Exact evaluation of derivatives does not require finding analytic expressions — we can use generic routines

to combine derivative values according to Leibniz’ rule for multiple derivatives of products and Faà di Bruno’s rule

for multiple derivatives of composite functions. Although we do not do so here, we could also resort to numerical

derivatives — there would a cost in numerical efficiency, but simulation consistency would not be compromised.

The Student’s t distribution and other scale mixtures of normals are often used in stochastic volatility models,

partly because they work well in auxiliary mixture model approaches using data augmentation for the mixing

random variables. A generic approach allows for other, possibly skewed, measurement distributions.

Fifth, it is based on operations using the sparse Hessian matrix of the log target density rather than on
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the Kalman filter. Articles using the former approach include Rue [2001], for linear Gaussian Markov random

fields, Chan and Jeliazkov [2009] and McCausland et al. [2011], for linear Gaussian state space models, and Rue

et al. [2009] for non-linear non-Gaussian Markov random fields. The Integrated Nested Laplace Approximation

(INLA) method described in the last article has spawned a large applied literature. Articles using the Kalman

filter include Carter and Kohn [1994], Frühwirth-Schnatter [1994], de Jong and Shephard [1995] and Durbin

and Koopman [2002] for linear Gaussian state space models. Auxiliary mixture model methods for non-linear

or non-Gaussian models tend to use the Kalman filter, but this is not an essential feature of these methods.

We will now be more precise about the class of state space models we consider. The state and measurement

equations are

α1 = d0 + ω
−1/2
0 u0, αt+1 = dt + φtαt + ω

−1/2
t ut, ut ∼ iid N(0, 1), (4)

f(y|α) =

[
n−1∏
t=1

f(yt|αt, αt+1)

]
f(yn|αn), (5)

where α ≡ (α1, . . . , αn) is a vector of univariate latent states αt, the yt are observable random vectors and

the f(yt|αt, αt+1) are density or mass functions. The dt, φt and ωt are parameters of the state dynamics and

do not depend on y. We say that models of this form exhibit a leverage-like effect whenever f(yt|αt, αt+1)

depends on αt+1. This will the case when the observable vector yt and the contemporaneous state innovation

ut = αt+1 − dt − φtαt are conditionally dependent given αt.

Appendix A gives an equivalent specification of (4) in terms of a tridiagonal precision matrix Ω̄ and a

covector c̄, giving the marginal distribution of α as α ∼ N(Ω̄−1c̄, Ω̄−1). Formulas for Ω̄ and c̄ in terms of the

ht, φt and ωt are provided there. Throughout most of the paper, we condition on Ω̄ and c̄ and any parameters

on which the f(yt|αt, αt+1) might depend and suppress notation for this conditioning. In Section 3, where we

consider joint inference for parameters and states, we are explicit about this conditioning.

The model in equations (1), (2) and (3) is of the form given by (4) and (5). Take d0 = ᾱ, ω0 = σ−2(1− φ2),

and for t > 0, dt = (1− φ)ᾱ, φt = φ, ωt = σ−2. Then use (1) to write ut = [αt+1 − (1− φ)ᾱ− φαt]/σ and then

the standard formula for conditional Gaussian distributions to obtain

yt|α ∼ N
(
(ρ/σ) exp(αt/2)(αt+1 − (1− φ)ᾱ− φαt), (1− ρ2) exp(αt)

)
. (6)

In Section 2 we describe our approximation g(α|y) of the target density f(α|y). We show how to evaluate it

and draw from the distribution with density g(α|y). Section 3 illustrates our methods using stochastic volatility

models with leverage, both with Gaussian and Student’s t measurement innovations. Section 4 concludes.

2 An approximation of the target density

Here we show how to construct our approximation g(α|y) of the target density f(α|y). To use g(α|y) as a

proposal or importance density, we must be able to evaluate the fully normalized g(α|y) and make exact draws
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from the corresponding distribution. Typically, we do both at once, computing g(α|y) at the value we draw.

Table 1 summarizes the notation of this section.

We take as input a complete specification of the state space model in (4) and (5), for example (1), (2) and

(3). The state dynamics in (4) are determined by specifying values for Ω̄ and c̄, which Appendix A shows how

to compute. We specify the measurement densities in (5) by supplying code to evaluate, at arbitrary values

of αt, αt+1 and αn, the functions ψt(αt, αt+1)
.
= log f(yt|αt, αt+1), t = 1, . . . , n− 1, and ψn(αn)

.
= log f(yn|αn),

together with partial derivatives

ψ
(p,q)
t (αt, αt+1)

.
=
∂p+qψt(αt, αt+1)

∂αpt ∂α
q
t+1

, ψ(p)
n (αn)

.
=
∂pψ(αn)

∂αpn
, (7)

at various orders p and q. Generic code calls these model-specific routines from time to time, passing them points

of evaluation (αt, αt+1) or αn. In this paper, we compute derivatives up to orders p = 6 and q = 6, enough for

a very close approximation.

The approximation g(α|y) has the Markov property, just as the target f(α|y) does, so we can decompose

it as

g(α|y) = g(αn|y)

1∏
t=n−1

g(αt|αt+1, y). (8)

We restrict attention here to the construction of g(αt|αt+1, y) as an approximation of f(αt|αt+1, y) for

t = 2, . . . , n− 1. Similar constructions of g(α1|α2, y) and g(αn|y) are given in the appendices.

Each factor g(αt|αt+1, y) is a member of a parametric family of univariate distributions described in

McCausland [2012]. One of the parameters gives the mode; others give the second through fifth derivatives

of the log density there. For a particular value of αt+1, we specify g(αt|αt+1, y) by selecting values for these

parameters. For the parameter giving the mode, we use an approximation Bt|t+1(αt+1) of the conditional mode

of αt given αt+1 and y; we denote the exact conditional mode by bt|t+1(αt+1). For the derivative parameters,

we use approximations of the second through fifth derivatives of ht(αt;αt+1)
.
= log f(αt|αt+1, y) with respect to

αt, evaluated at Bt|t+1(αt+1).

We still need suitable approximations of the derivatives of ht(αt;αt+1). These are based on the following

exact expression for the first derivative:

h
(1)
t (αt;αt+1) = c̄t − Ω̄t−1,tµt−1|t(αt)− Ω̄t,tαt − Ω̄t,t+1αt+1

+ δt−1|t(αt) + ψ
(1,0)
t (αt, αt+1), t = 2, . . . , n− 1,

(9)

where µt−1|t(αt)
.
= E[αt−1|αt, y], δt−1|t(αt)

.
= E[ψ

(0,1)
t−1 (αt−1, αt)|αt, y], c̄t and Ω̄t,s are respectively elements of

the covector c̄ and covariance matrix Ω̄. This result and analogous results for t = 1 and t = n are derived in

Appendix C.1.

We cannot evaluate h
(1)
t (αt;αt+1) and its derivatives exactly because we cannot evaluate µt−1|t(αt) or
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δt−1|t(αt) exactly. Nor can we evaluate the conditional mode bt|t+1(αt+1) exactly. We will construct polynomial

approximations Bt|t+1(αt+1), Mt−1|t(αt) and ∆t−1|t(αt) of bt|t+1(αt+1), µt−1|t(αt) and δt−1|t(αt), all based on

approximate Taylor expansions. Replacing the functions δt−1|t(αt) and µt−1|t(αt) in Equation (9) by ∆t−1|t(αt)

and Mt−1|t(αt) gives an approximation of h
(1)
t (αt;αt+1) which we denote H

(1)
t (αt;αt+1). H

(1)
t (αt;αt+1) and

higher order derivatives are easy to evaluate.

Computation proceeds according to the following steps. We first find the mode a = (a1, . . . , an) of the target

density f(α|y). Then we compute coefficients of the polynomial approximations Bt|t+1(αt+1), Mt−1|t(αt) and

∆t−1|t(αt) in a forward pass. These functions are approximate Taylor expansions, with the elements at and at+1

of the mode as points of expansion. Finally, we evaluate and/or draw from g(α|y) using a backward pass. At

step t a value for αt+1 is available. We first evaluate Bt|t+1(αt+1), the approximate conditional mode. Next we

evaluate approximate derivatives H
(r)
t (Bt|t+1(αt+1);αt+1) of orders r = 2, 3, 4, 5. The approximate mode and

derivatives are used as parameter values for the parametric family of univariate distributions in McCausland

[2012]. Appendix G of that paper describes how to draw variates and evaluate the density.

The generic part of the computation is documented in detail in various appendices. Appendix A shows how

to compute the mode of α given y; some of the computational details are in Appendix B of McCausland [2012].

McCausland et al. [2011] comment on the higher numerical efficiency of such “precision based methods,” relative

to the Kalman filter. This numerical efficiency is an advantage, but a small one here, since computing the mode is

not a large fraction of the computational cost. Appendix B describes how to compute the coefficients of the Taylor

expansions of at|t+1(αt+1) and Σt|t+1(αt+1). These functions, which are used to construct Bt|t+1(αt+1), are the

mean and variance of αt according to a Gaussian approximation whose log density has the same gradient and

Hessian as log f(α1, . . . , αt|αt+1, y) at the mode of f(α1, . . . , αt|αt+1, y). Appendix C describes how to compute

the coefficients of ∆t−1|t(αt), Bt|t+1(αt+1) and Mt−1|t(αt).

On request we will provide code for the generic computation, as well as code computing the required partial

derivatives for the two models of the next section. Appendix D documents the computation of these partial

derivatives. Code for the two models and Appendix D should be useful as an example for anyone wishing to

construct an approximation g(α|y) for a new model.

3 Empirical example

3.1 Models

We consider two stochastic volatility models with leverage or asymmetric stochastic volatility (ASV) models.

The first, ASV-Gaussian, is the basic model of equations (1), (2) and (3). The second, ASV-Student, replaces

observation equation (2) with

yt = exp(αt/2)
vt√
λt/ν

, (10)

where λt ∼ χ2(ν) and the λt and (ut, vt) are mutually independent.
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We integrate out λt to obtain the conditional distribution of yt given αt and αt+1. This is a scaled non-central

Student’s t; to see this, write yt = exp(αt/2)
√

1− ρ2X, where

X
.
=
ut/
√

1− ρ2√
λt/ν

.

Now condition on αt and αt+1. The numerator and denominator are independent; the numerator is Gaussian

with mean µ
.
= ρ(1− ρ2)−1/2σ−1(αt+1 − (1− φ)ᾱ− φαt) and unit variance; and λt is chi-squared with ν degrees

of freedom. Therefore X is non-central Student’s t with non-centrality parameter µ and ν degrees of freedom.

Its density is

fX(x; ν, µ) =
νν/2

2ν
Γ(ν + 1)

Γ(ν/2)
exp(−µ2/2)(ν + x2)−ν/2

×

 √2µx

ν + x2

M
(
ν
2 + 1; 3

2 ; µ2x2

2(ν+x2)

)
Γ(ν+1

2 )
+

1√
ν + x2

M
(
ν+1
2 ; 1

2 ; µ2x2

2(ν+x2)

)
Γ(ν/2 + 1)

 , (11)

where Γ(ν) is the gamma function and M(a; b; z) is Kummer’s function of the first kind, a confluent

hypergeometric function. See Scharf (1991). We obtain f(yt|αt, αt+1) using the change of variables yt =

exp(αt/2)
√

1− ρ2X. The log conditional density ψt(αt, αt+1) ≡ log f(yt|αt, αt+1) and its derivatives are given

in Appendix D.

For both models, the state equation parameters are ωt = σ−2, φt = φ and dt = (1− φ)ᾱ for all t > 1. The

marginal distribution of the initial state α1 is the stationary distribution, so that ω0 = (1− φ2)σ−2 and d0 = ᾱ.

Our prior is a multivariate Gaussian distribution over the transformed parameter vector θ:

θ
.
=



log σ

tanh−1 φ

ᾱ

tanh−1 ρ

log ν


∼ N





−1.8

2.1

−11.0

−0.4

2.5


,



0.125 −0.05 0 0 0

−0.05 0.1 0 0 0

0 0 4 0 0

0 0 0 0.25 0

0 0 0 0 0.25




.

The marginal distribution of (log σ, tanh−1 φ, ᾱ, log ν) is the same as the prior in McCausland [2012] for a

Student’s t stochastic volatility model without leverage, and is based on a prior predictive analysis. The

parameter tanh−1 ρ is Gaussian and a priori independent with mean -0.4 and standard deviation 0.5. This

implies prior quantiles 0.1, 0.5 and 0.9 for ρ approximately equal to -0.78, -0.38 and 0.23.

3.2 MCMC and IS methods for posterior simulation

We illustrate the performance of the HESSIAN approximation, using Markov chain Monte Carlo (MCMC) and

importance sampling, (IS) comparing with Omori et al. [2007]. In both cases, we draw θ and α jointly. We use
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as proposal density (resp. importance density) g(α, θ|y) = g(α|θ, y)g(θ|y), based on an approximation g(θ|y) of

f(θ|y) described next and the HESSIAN approximation g(α|θ, y) of f(α|θ, y).

We construct g(θ|y) as follows. Just as g(α|θ, y) is a close approximation of f(α|θ, y), g̃(θ|y)
.
=

f(α, θ, y)/g(α|θ, y) is a good unnormalised approximation of f(θ|y). Let θ◦ be the maximiser of g̃(θ|y), Σ◦

be the inverse of the negative Hessian of log g̃(θ|y) at θ◦, and nθ be the dimension of θ, equal to 4 for the

Gaussian model and 5 for the Student’s t model. We choose g(θ|y) to be a nθ-variate Student’s t density with

location θ◦, scale matrix Σ◦, and degrees of freedom equal to 30.

In the MCMC posterior simulation we use an independence Metropolis-Hastings chain. The joint proposal

(α?, θ?) from g(θ|y)g(α|θ, y) is accepted with probability

π(θ?, α?, θ, α) = min

[
1,
f(θ?)f(α?|θ?)f(y|θ?, α?)
f(θ)f(α|θ)f(y|θ, α)

g(θ|y)g(α|θ, y)

g(θ?|y)g(α?|θ?, y)

]
.

Since we can approximate well the full posterior density, we can use IS. Unlike MCMC proposals, importance

draws do not need to be independent. We exploit this to reduce variance, using a combination of quasi-random

and pseudo-random sequences to draw θ. We form M blocks of length S each, for a total of MS draws. S is a

power of two, convenient for Sobol quasi-random sequences.

We draw U (m), m = 1, . . . ,M , independently from the uniform distribution on the hypercube (0, 1)nθ . For

s = 1, . . . , S, V (s) is the s′th element of the nθ-dimensional Sobol sequence. For m = 1, . . . ,M and s = 1, . . . , S,

we compute U (m,s), defined as the modulo 1 sum of U (m) and V (s). Thus U (m,s) is uniformly distributed on

(0, 1)nθ and the M blocks of length S are independent. We use U (m,s) to draw θ(m,s) from g(θ|y): use U (m,s)

to construct a 6-vector of independent standard Gaussian variates using the inverse cdf method then construct

θ(m,s) by pre-multiplying by the Cholesky decomposition of the scale matrix times
√
ν/ω2, where ω2 ∼ χ2(ν).

Let h(θ, α) be any function of interest. The IS estimator for E[h(θ, α)|y] is N/D, where

N
.
=

M∑
m=1

S∑
s=1

w(m,s)h(θ(m,s), α(m,s)), D
.
=

M∑
m=1

S∑
s=1

w(m,s),

and w(m,s) = f(θ(m,s), α(m,s), y)/g(θ(m,s), α(m,s)|y). If the posterior mean of h(θ, α) exists, then the ratio

R = N/D is a simulation convergent estimator of E[h(θ, α)|y].

Following Geweke [1989], we approximate the posterior variance of h(θ, α) by

σ̂2
h
.
=

∑M
m=1

∑S
s=1[w(m,s)(h(θ(m,s), α(m,s))−R)]2

D2
.

We compute a numerical variance σ̂2
R for R using the delta method: σ̂2

R
.
= (σ̂2

N − 2Rσ̂ND +R2σ̂2
D)(MS/D)2,

where σ̂2
N and σ̂2

D are estimates of the variances ofN andD and σ̂ND is an estimate of the covariance. Specifically,
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σ̂2
N is (1/M) times the sample variance of the M independent terms

Nm =
1

S

S∑
s=1

w(m,s)h(θ(m,s), α(m,s)), m = 1, . . . ,M,

and analogously for σ̂2
D and σ̂ND. Then σ̂2

h/MSσ̂2
R is an estimate of the relative numerical efficiency.

3.3 Marginal likelihood approximation

Using g(θ|y)g(α|θ, y) as an importance density, the mean of the (independent) importance weights is a simulation-

consistent and -unbiased estimator of the marginal likelihood. Our close approximation makes the variation in

weights extremely small, which implies highly numerically efficient marginal likelihood estimation.

3.4 Getting it Right

We performed extensive testing of our posterior simulators using tests of correctness similar to those described in

Geweke [2004]. These tests have power against a wide array of conceptual and programming errors. Our results

fail to cast doubt on the correctness of our implementation. Interested readers can consult a previous version of

this paper, available by request from the authors.

3.5 Results

For the ASV-Gaussian model, we report results for our HESSIAN independence Metropolis-Hastings and IS

methods and the method of Omori et al. [2007]. We use the labels HIM, HIS and OCSN to identify them. We

analyze three data sets. The first consists of daily returns of the S&P 500 index from January 2000 to December

2012, a period including the recent global financial crisis. It consists of 3268 daily returns. The second is a sample,

used by Yu [2005], of S&P returns from January 1980 to December 1987, for a total of 2022 observations. The

third data set consists of 1232 daily returns of the TOPIX index. This data set, used by Omori et al. [2007], is

available at Nakajima’s website http://sites.google.com/site/jnakajimaweb/sv.

For the HIM chain, we discard the first 10 draws and retain the next 12,800. We use M = 100 and S = 128

for HIS, giving the same total number of draws. For the OCSN chain, we discard the first 500 values and retain

the next 12,800. All three methods are coded in C++. We used a Windows PC with an Intel Core i5 2.90GHz

processor. We report execution times for the ASV-Gaussian model. For the 2000-2012 S&P 500 data, they are

134s, 138s and 172s for HIS, HIM and OCSN, respectively; for the 1980-1987 S&P 500 data, they are 81s, 82s

and 111s; for the TOPIX data, 45s, 45 and 67s.

Table 2 summarizes estimation results for the ASV-Gaussian model. The first two columns show numerical

estimates of the posterior mean and standard deviation for the various parameters. The third and fourth columns

give the numerical standard error (NSE) and the relative numerical efficiency (RNE) of the posterior sample

mean. The RNE measures numerical efficiency relative to that of the mean of an iid posterior sample, see Geweke
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[1989] for more details. We use the results of Section 3.2 to compute the NSE and RNE of the IS chain and

the OCSN chain. We use the contributed coda library of the R software to compute those of the HESSIAN

independence Metropolis-Hastings method. This uses a time series method based on the estimated spectral

density at frequency zero. Since we implement the procedure of Omori et al. [2007] using the prior described in

their article, the actual posterior means for OCSN are slightly different from those of our methods.

The HIS method outperforms the OCSN method in all cases. Its numerical efficiency is higher than that

of OCSN, and apart from the unconditional mean parameter ᾱ of log volatility, at least four times higher. The

efficiency of the IS sample means is sometimes greater than 1. This is possible because of the variance reduction

achieved by using quasi-random numbers. In addition, the HIS procedure has a lower execution time and thus

higher numerical precision per unit time. Except for ᾱ, the HESSIAN independence Metropolis Hastings method

outperforms the OCSN procedure, as measured by relative numerical efficiency.

The reported posterior means of the parameters φ, σ and ρ are similar to the values reported by Omori

et al. [2007] for the TOPIX index. The difference in the posterior means ᾱ is due to the fact that these authors

measure daily returns in percentages. The same is true for Yu [2005] in the case of the S&P500.

For the ASV-Student model we only report results for the HESSIAN procedures. Table 3 summarizes the

results of the three datasets. The estimates of the parameters ᾱ, φ, σ and ρ are close to those obtained with the

ASV-Gaussian. The numerical efficiency is also substantially higher.

Comparing parameter estimates using the two S&P500 data sets reveals that the dynamics have changed.

Recent data exhibits more turmoil in markets in terms of volatility of volatility and leverage — estimates of σ

and ρ obtained with the 2000-2012 sample are higher in absolute values than those obtained with the 1980-1987

sample.

Nakajima and Omori [2009] proposed an extension of the procedure in Omori et al. [2007] for ASV-Student

and other models. They illustrate the procedure using S&P500 (nominally January 1, 1970 to December 31,

2003) and Topix (Janury 6, 1992 to December 30, 2004) data. Table 4 and Table 5 in Nakajima and Omori [2009]

report results for S&P500 and Topix data, respectively. Numerical efficiency for the ASV-Student model (SVLt

in their paper) ranges from 0.006 (ν) to 0.291 (µ) for the S&P500 dataset. For the Topix data, the highest value

of efficiency reported is 0.0893. To compare efficiency, we measured the numerical efficiency of the HESSIAN

method, with randomised pseudo-Monte Carlo IS, on S&P500 data from January 1, 1970 to December 31, 2003.

Our sample size is 8586 rather than 8869 reported in Nakajima and Omori [2009]. Numerical efficiency ranges

from 0.91 (φ) to 1.01 (µ).

For the S&P500 data from 1970 to 2003, the log marginal likelihoods are 6595.91 for ASV-Gaussian and

6609.67 for ASV-Student, with numerical standard errors of 0.043 and 0.055. The Bayes factor of exp(13.76)

decisively favours the ASV-Student model. Similarly, the more recent S&P dataset, from 2000 to 2012, gives a

Bayes factor of exp(3.434) in favour of the ASV-Student model. The log marginal likelihoods of the ASV-Student

and ASV-Gaussian models are respectively 10270.01 and 10266.57, with numerical standard errors 0.0096 and
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0.0083.

4 Conclusion

We have derived an approximation g(α|θ, y) of the target density f(α|θ, y) that can be used as a proposal density

for MCMC or as an importance density for importance sampling. We have tested the correctness of our posterior

simulators. Applications suggests that the HESSIAN method, which is not model-specific, is more numerically

efficient than the model-specific method of Omori et al. [2007], which is in turn more efficient than the methods

of Jacquier et al. [2004] and Omori and Watanabe [2008]. High numerical efficiency relies on g(α|θ, y) being

extremely close to the target f(α|θ, y). A joint proposal of (θ, α) improves efficiency beyond what is achieved by

drawing α as a single block and allows for importance sampling with variance reduction and very numerically

efficient marginal likelihood approximations.

The scope of applications goes beyond the ASV-Gaussian and ASV-Student models. Application to a new

model requires code to compute partial derivatives of the log f(yt|αt, αt+1) with respect to αt and αt+1. This

is not as demanding as it might first appear, for two reasons. First, we can use numerical derivatives or other

approximations. Second, we do not require analytic expressions; if log f(yt|αt, αt+1) is a composition of primitive

functions, we can combine evaluations of the derivatives of the primitive functions using routines applying Fàa

Di Bruno’s rule for multiple derivatives of compound functions. We have already coded these generic routines.

We now require states to be Gaussian. We plan to extend the HESSIAN method to models where they

are non-Gaussian but still Markov. We are also working on approximations to filtering densities for sequential

learning.
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A Computation of the conditional mode of α given y.

Here we compute the precision Ω̄ and covector c̄ of the marginal distribution of α, and the mode a = (a1, . . . , an)

of the target distribution. By-products of the computation of a include several quantities used elsewhere,

including ¯̄Ω and ¯̄c, the precision and covector of a Gaussian approximation N(¯̄Ω−1¯̄c, ¯̄Ω−1) of the target

distribution, and the conditional variances Σ1, . . . ,Σt, . . . ,Σn. The precision matrices Ω̄ and ¯̄Ω are both

tridiagonal.

As the state dynamics are no different, we compute Ω̄ and c̄ exactly as in McCausland [2012]:

Ω̄t,t = ωt−1 + ωtφ
2
t , Ω̄t,t+1 = −ωtφt, t = 1, . . . , n− 1,

Ω̄n,n = ωn−1,
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c̄t =


ωt−1dt−1 − ωtφtdt t = 1, . . . , n− 1,

ωn−1dn−1 t = n.

(12)

As in McCausland [2012], we use a Newton-Raphson method to find the mode of the target distribution.

At each iteration, we compute a precision ¯̄Ω(α) and covector ¯̄c(α) of a Gaussian approximation to the target

distribution based on a second order Taylor series expansion of the log target density around the current value

of α. Specifically, ¯̄Ω(α) is the negative Hessian matrix of log f(α|y) with respect to α at the current value of α.

It is a symmetric tri-diagonal matrix with non-zero upper triangular elements given by

¯̄Ωt,t(α) = Ω̄t,t −
(
ψ
(2,0)
t (αt, αt+1) + ψ

(0,2)
t−1 (αt−1, αt)

)
, t = 2, . . . , n− 1,

¯̄Ω1,1(α) = Ω̄1,1 − ψ(2,0)
t (αt, αt+1), ¯̄Ωnn(α) = Ω̄n,n −

(
ψ(2)
n (αn) + ψ

(0,2)
n−1 (αn−1, αn)

)
,

¯̄Ωt,t+1(α) = Ω̄t,t+1 − ψ(1,1)
t (αt, αt+1), t = 1, . . . , n− 1.

The covector ¯̄c(α) is

¯̄c(α)
.
= ¯̄Ω(α)α+

∂ log f(y|α)

∂α>
,

and its elements are

¯̄ct(α) =


c̄t + ¯̄Ωt,tαt + ¯̄Ωt,t+1αt+1 + ψ

(1,0)
t (αt, αt+1) t = 1

c̄t + ¯̄Ωt,t−1αt−1 + ¯̄Ωt,tαt + ¯̄Ωt,t+1αt+1 + ψ
(1,0)
t (αt, αt+1) + ψ

(0,1)
t−1 (αt−1, αt) t = 2, . . . , n− 1

c̄n + ¯̄Ωn,n−1αn−1 + ¯̄Ωnnαn + ψ
(1)
n (αn) + ψ

(0,1)
n−1 (αn−1, αn)(αn−1, αn) t = n.

(13)

Let ¯̄Ω
.
= ¯̄Ω(a) and ¯̄c

.
= ¯̄c(a). Then the mean (and mode) of the Gaussian approximation N(¯̄Ω−1¯̄c, ¯̄Ω−1) is a,

the mode of the target distribution, and its log density has the same Hessian matrix as the log target density

at a.

While these expressions for ¯̄Ω and ¯̄c are more complicated than those in McCausland [2012], once we have

them we compute the mode a in the same way. Roughly speaking, we iterate the computation α′ = ¯̄Ω(α)−1¯̄c(α)

until numerical convergence. We use two modifications to this procedure, one to accelerate convergence using

higher order derivatives and the other to resort to line searches in the rare cases of non-convergence.

B Polynomial approximations of at|t+1 and st|t+1

Here we compute coefficients of exact Taylor expansions of at|t+1(αt+1) and st|t+1(αt+1). These are the

conditional mean and log variance of αt given αt+1 for a Gaussian approximation of the conditional distribution

of α1, . . . , αt given αt+1 and y.
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We derive recursive expressions giving coefficients at all orders r. In practice, computational costs rises

quickly and benefits diminish quickly in r. We give simplified expressions for a
(r)
t

.
= a

(r)
t|t+1(at+1) up to r = 5 and

s
(r)
t

.
= s

(r)
t|t+1(at+1) up to r = 4.

The basic strategy involves taking derivatives of two identities. The first is a first order necessary condition

on at−1|t+1(αt+1) and at|t+1(αt+1) for (a1|t+1(αt+1), . . . , at|t+1(αt+1)) to be the conditional mode of (α1, . . . , αt)

given αt+1 and y. The second is the identity at−1|t+1(αt+1) = at−1|t(at|t+1(αt+1)).

B.1 General Formula

We begin with the case t = 1. Since f(α1|α2, y) ∝ f(α1, α2)f(y1|α1, α2), we can write

log f(α1|α2, y) = −1

2
Ω̄1,1α

2
1 − Ω̄1,2α1α2 + c̄1α1 + log f(y1|α1, α2) + k. (14)

where k does not depend on α1. The conditional mode a1|2(α2) maximizes log f(α1|α2, y) and must therefore

satisfy

−Ω̄1,1a1|2(α2)− Ω̄1,2α2 + c̄1 + ψ
(1,0)
1 (a1|2(α2), α2) = 0. (15)

Taking the derivative of (15) with respect to α2, and using the definitions ¯̄Ω1,1|2(α2) = (Ω̄1,1 −

ψ
(2,0)
1 (a1|2(α2), α2)) and ¯̄Ω1,2|2(α2) = Ω̄1,2 − ψ(1,1)

1 (a1|2(α2), α2) gives

¯̄Ω1,1|2(α2)a
(1)
1|2(α2) = − ¯̄Ω1,2|2(α2). (16)

Solving for a
(1)
1|2(α2), we obtain

a
(1)
1|2(α2) = −Σ1|2(α2) ¯̄Ω1,2|2(α2), (17)

where Σ1|2(α2) = ¯̄Ω−11,1|2(α2). Setting α2 = a2 gives a
(1)
1 = −Σ1

¯̄Ω1,2.

We now derive an expression allowing us to compute a
(r)
1 in terms of a

(i)
1 , i < r. First differentiate (16)

(r − 1) times with respect to α2. Using Leibniz’s rule, we obtain

r−1∑
i=0

(
r − 1

i

)
¯̄Ω
(r−1−i)
1,1|2 (α2)a

(i+1)
1|2 (α2) = − ¯̄Ω

(r−1)
1,2|2 (α2).

Then solving for a
(r)
1|2(α2) gives

a
(r)
1|2(α2) = −Σ1|2(α2)

[
r−2∑
i=0

(
r − 1

i

)
¯̄Ω
(r−1−i)
1,1|2 (α2)a

(i+1)
1|2 (α2) + ¯̄Ω

(r−1)
1,2|2 (α2)

]
. (18)
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Finally, we evaluate (18) at α2 = a2 to obtain

a
(r)
1 = −Σ1

[
r−2∑
i=0

(
r − 1

i

)
¯̄Ω
(r−1−i)
1,1 a

(i+1)
1 + ¯̄Ω

(r−1)
1,2

]
. (19)

We now derive an expression relating the a
(r)
1 and the s

(r)
1 , which we will use to obtain the latter from

the former. First recall the definition Σ1|2(α2) = exp(s1|2(α2)). Using Faà Di Bruno’s formula for derivatives of

compound functions, we obtain, for i ≥ 1,

Σ
(i)
1|2(α2) =

i∑
j=1

exp(s1|2(α2))Bi,j(s
(1)
1|2(α2), . . . , s

(i−j+1)
1|2 (α2))

= Σ1|2(α2)Bi(s
(1)
1|2(α2), . . . , s

(i)
1|2(α2)), (20)

where the Bi,j are Bell polynomials and Bi is the i’th complete Bell polynomial. Appendix E shows how to

compute these polynomials. We now differentiate (17) (r − 1) times with respect to α2, to obtain

a
(r)
1|2(α2) =−

r−1∑
i=0

(
r − 1

i

)
Σ

(i)
1|2(α2) ¯̄Ω

(r−1−i)
1,2|2 (α2)

=− Σ1|2(α2)

r−1∑
i=0

(
r − 1

i

)
Bi(s

(1)
1|2(α2), . . . , s

(i)
1|2(α2)) ¯̄Ω

(r−1−i)
1,2|2 (α2).

Evaluating at α2 = a2 gives us the desired expression:

a
(r)
1 = −Σ1

r−1∑
i=0

(
r − 1

i

)
Bi(s

(1)
1 , . . . , s

(i)
1 ) ¯̄Ω

(r−1−i)
1,2 . (21)

We now move on to the case 1 < t < n. The conditional mode a1:t|t+1(αt+1) =

(a1|t+1(αt+1), . . . , at|t+1(αt+1)) must satisfy the first order necessary condition

0 =c̄t − Ω̄t−1,tat−1|t+1(αt+1)− Ω̄t,tat|t+1(αt+1)− Ω̄t,t+1αt+1

+ ψ
(0,1)
t−1 (at−1|t(at|t+1), at|t+1) + ψ

(1,0)
t (at|t+1, αt+1).

(22)

Taking the derivative of (22) with respect to αt+1 gives

¯̄Ωt,t−1(αt+1)a
(1)
t−1|t+1(αt+1) + ¯̄Ωt,t(αt+1)a

(1)
t|t+1(αt+1) + ¯̄Ωt,t+1(αt+1) = 0. (23)

Using the identity at−1|t+1(αt+1) = at−1|t
(
at|t+1(αt+1)

)
and the chain rule gives

a
(1)
t−1|t+1(αt+1) = a

(1)
t−1|t(at|t+1(αt+1))a

(1)
t|t+1(αt+1). (24)
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Substituting (24) in (23), we obtain

(
¯̄Ωt,t−1(αt+1)a

(1)
t−1|t(at|t+1(αt+1)) + ¯̄Ωt,t(αt+1)

)
a
(1)
t|t+1(αt+1) = − ¯̄Ωt,t+1(αt+1).

Then, following an analogous development in McCausland [2012], we can show by induction that

a
(1)
t|t+1(αt+1) = −Σt|t+1(αt+1) ¯̄Ωt,t+1(αt+1), t = 2, . . . , n− 1, (25)

where
[
Σt|t+1(αt+1)

]−1
= ¯̄Ωt,t−1(αt+1)a

(1)
t−1|t(at|t+1(αt+1)) + ¯̄Ωt,t(αt+1). Taking αt+1 = at+1 in (25) gives

a
(1)
t = −Σt

¯̄Ωt,t+1. (26)

For r ≥ 2, we use Leibniz’s rule to differentiate (23) (r − 1) times with respect to αt+1 and obtain

r−1∑
i=0

(
r − 1

i

)(
¯̄Ω
(i)
t,t−1(αt+1)a

(r−i)
t−1|t+1(αt+1) + ¯̄Ω

(i)
t,t(αt+1)a

(r−i)
t|t+1 (αt+1)

)
= − ¯̄Ω

(r−1)
t,t+1 (αt+1). (27)

Using Faà di Bruno’s formula for arbitrary order derivatives of compound functions, we compute the i’th

derivative of at−1|t+1(αt+1) with respect to αt+1 as

a
(i)
t−1|t+1(αt+1) =

i∑
j=1

a
(j)
t−1|t(at|t+1)Bi,j(a

(1)
t|t+1(αt+1), . . . , a

(i−j+1)
t|t+1 (αt+1)). (28)

If we substitute a
(i)
t−1|t+1(αt+1) of (28) in (27) and set αt+1 = at+1, we obtain

r−1∑
i=0

(
r − 1

i

){
¯̄Ω
(i)
t,t−1

[
r−i∑
j=1

a
(j)
t−1Br−i,j(a

(1)
t , . . . , a

(r−i−j+1)
t )

]
+ ¯̄Ω

(i)
t,ta

(r−i)
t

}
= − ¯̄Ω

(r−1)
t,t+1 . (29)

This gives an expression for a
(r)
t in terms of a

(i)
t , i = 0, . . . , r − 1; a

(i)
t−1, i = 0, . . . , r; ¯̄Ω

(i)
t,t−1 and ¯̄Ω

(i)
t,t , i =

1, . . . , r − 1; and ¯̄Ω
(r−1)
t,t+1 .

We now derive a result that will give us s
(r)
t in terms of a

(i)
t and s

(i)
t , i = 1, . . . , r − 1 and a

(i)
t−1,

i = 1, . . . , r + 1. Analogously with equation (20), we have

Σ
(r)
t|t+1(αt+1) = Σt|t+1(αt+1)Br(s

(1)
t|t+1(αt+1), . . . , s

(r)
t|t+1(αt+1)).

Using Leibniz’s rule to take derivatives of (25) with respect to αt+1, and evaluating at αt+1 = at+1, we obtain

a
(r)
t =

r−1∑
i=0

(
r − 1

i

)
Bi(s

(1)
t , . . . , s

(i)
t )Σt

¯̄Ω
(r−1−i)
t,t+1 . (30)
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The quantities ¯̄Ω
(r)
t,s involved in the computation of a

(r)
t and s

(r)
t are functions of derivatives of

ψ
(p,q)
t (at|t+1, αt+1) with respect to αt+1, evaluated at at+1. Equations (73) and (74) of Appendix E show

how to compute these derivatives as functions of derivatives of ψ
(p,q)
t (αt, αt+1), supplied as part of the model

specification.

B.2 Explicit Formula for R = 5

We now derive simplified expressions for a
(r)
t , r = 1, . . . , 5 and s

(r)
t , r = 1, . . . , 4, for t = 1, . . . , n− 1. We give

details of the computation for t = 2, . . . , n− 1. For the special case t = 1, we can obtain analogous results simply

by setting any terms with a time index of zero to zero.

We have already have an expression for a
(1)
t , t = 1, . . . , n− 1, in (26). Taking r = 2 in (29) gives

¯̄Ωt,t−1

(
a
(1)
t−1a

(2)
t + a

(2)
t−1

(
a
(1)
t

)2)
+ ¯̄Ωt,ta

(2)
t + ¯̄Ω

(1)
t,t−1a

(1)
t−1a

(1)
t + ¯̄Ω

(1)
t,t a

(1)
t = ¯̄Ω

(1)
t,t+1,

which simplifies to

a
(2)
t =

(
γta

(1)
t a

(2)
t−1 − Σt

¯̄Ω
(1)

t

)
a
(1)
t − Σt

¯̄Ω
(1)
t,t+1, (31)

where γt = −Σt
¯̄Ωt,t−1 and ¯̄Ω

(i)

t = ¯̄Ω
(i)
t,t−1a

(1)
t + ¯̄Ω

(i)
t,t . Setting r = 2 in (30) gives

a
(2)
t = s

(1)
t a

(1)
t − Σt

¯̄Ω
(1)
t,t+1. (32)

Equating the right hand sides of (31) and (32) and solving for s
(1)
t gives

s
(1)
t = γta

(1)
t a

(2)
t−1 − Σt

¯̄Ω
(1)

t . (33)

Setting r = 3 in (29) gives

− ¯̄Ω
(2)
t,t+1 =¯̄Ωt,t−1

(
a
(1)
t−1a

(3)
t + 3a

(2)
t−1a

(1)
t a

(2)
t + a

(3)
t−1

(
a
(1)
t

)3)
+ ¯̄Ωt,ta

(3)
t

+ 2

(
¯̄Ω
(1)
t,t−1

(
a
(1)
t−1a

(2)
t + a

(2)
t−1

(
a
(1)
t

)2)
+ ¯̄Ω

(1)
t,t a

(1)
t

)
+ ¯̄Ω

(2)
t,t−1a

(1)
t−1a

(1)
t + ¯̄Ω

(2)
t,t a

(1)
t .

Solving for a
(3)
t , we obtain

a
(3)
t =γt

(
3a

(1)
t a

(2)
t a

(2)
t−1 +

(
a
(1)
t

)3
a
(3)
t−1

)
− 2Σt

(
¯̄Ω
(1)
t,t−1

(
a
(1)
t

)2
a
(2)
t−1 + ¯̄Ω

(1)

t a
(2)
t

)
− Σt

¯̄Ω
(2)

t a
(1)
t − Σt

¯̄Ω
(2)
t,t+1

=2
(
γta

(1)
t a

(2)
t−1 − Σt

¯̄Ω
(1)

t

)
a
(2)
t +

(
γta

(1)
t a

(3)
t−1 − 2Σt

¯̄Ω
(1)
t,t−1a

(2)
t−1

)(
a
(1)
t

)2
+
(
γta

(2)
t a

(2)
t−1 − Σt

¯̄Ω
(2)

t

)
a
(1)
t − Σt

¯̄Ω
(2)
t,t+1.
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We use (33) to simplify this to

a
(3)
t =2s

(1)
t a

(2)
t +

(
γta

(1)
t a

(3)
t−1 − 2Σt

¯̄Ω
(1)
t,t−1a

(2)
t−1

)(
a
(1)
t

)2
+
(
γta

(2)
t a

(2)
t−1 − Σt

¯̄Ω
(2)

t

)
a
(1)
t − Σt

¯̄Ω
(2)
t,t+1.

(34)

Setting r = 3 in (30) gives an alternative expression for a
(3)
t :

a
(3)
t =

(
s
(2)
t +

(
s
(1)
t

)2)
a
(1)
t − Σt

¯̄Ω
(2)
t,t+1 − 2s

(1)
t Σt

¯̄Ω
(1)
t,t+1

=

(
s
(2)
t +

(
s
(1)
t

)2)
a
(1)
t − Σt

¯̄Ω
(2)
t,t+1 + 2s

(1)
t

(
a
(2)
t − s

(1)
t a

(1)
t

)
=

(
s
(2)
t −

(
s
(1)
t

)2)
a
(1)
t + 2s

(1)
t a

(2)
t − Σt

¯̄Ω
(2)
t,t+1.

(35)

Equating the right hand sides of (34) and (35) and solving for s
(2)
t gives

s
(2)
t =

(
s
(1)
t

)2
+
(
γta

(1)
t a

(3)
t−1 − 2Σt

¯̄Ω
(1)
t,t−1a

(2)
t−1

)
a
(1)
t +

(
γta

(2)
t a

(2)
t−1 − Σt

¯̄Ω
(2)

t

)
. (36)

We follow a similar procedure to compute the following formulas for a
(4)
t , s

(3)
t , and a

(5)
t , s

(4)
t :

a
(4)
t =

(
γta

(1)
t a

(4)
t−1 − 3Σt

¯̄Ω
(1)
t,t−1a

(3)
t−1

)(
a
(1)
t

)3
+ 3

(
γta

(2)
t a

(3)
t−1 − Σt

¯̄Ω
(2)
t,t−1a

(2)
t−1

)(
a
(1)
t

)2
+
(
γta

(3)
t a

(2)
t−1 − 3Σt

¯̄Ω
(1)
t,t−1a

(2)
t a

(2)
t−1 − Σt

¯̄Ω
(3)

t

)
a
(1)
t − Σt

¯̄Ω
(3)
t,t+1

+ 3

(
s
(2)
t −

(
s
(1)
t

)2)
a
(2)
t + 3s

(1)
t a

(3)
t ,

(37)

s
(3)
t =−

(
s
(1)
t

)3
+ 3s

(1)
t s

(2)
t +

(
γta

(1)
t a

(4)
t−1 − 3Σt

¯̄Ω
(1)
t,t−1a

(3)
t−1

)(
a
(1)
t

)2
+ 3

(
γta

(2)
t a

(3)
t−1 − Σt

¯̄Ω
(2)
t,t−1a

(2)
t−1

)
a
(1)
t +

(
γta

(3)
t − 3Σt

¯̄Ω
(1)
t,t−1a

(2)
t

)
a
(2)
t−1 − Σt

¯̄Ω
(3)

t

(38)

a
(5)
t =− Σt

¯̄Ω
(4)
t,t+1 +

(
γta

(5)
t−1a

(1)
t − 4Σt

¯̄Ω
(1)
t,t−1a

(4)
t−1

)(
a
(1)
t

)4
+ 6

(
γta

(4)
t−1a

(2)
t − Σt

¯̄Ω
(2)
t,t−1a

(3)
t−1

)(
a
(1)
t

)3
+ 4

(
γta

(3)
t−1a

(3)
t − Σt

¯̄Ω
(3)
t,t−1a

(2)
t−1 − 2Σt

¯̄Ω
(1)
t,t−1a

(3)
t−1a

(2)
t

)(
a
(1)
t

)2
+

(
γt

(
a
(2)
t−1a

(4)
t + 3a

(3)
t−1

(
a
(2)
t

)2)
− Σt

¯̄Ω
(4)

t − 6Σt
¯̄Ω
(2)
t,t−1a

(2)
t−1a

(2)
t − 4Σt

¯̄Ω
(1)
t,t−1a

(2)
t−1a

(3)
t

)
a
(1)
t

+ 4s
(1)
t a

(4)
t + 6

(
s
(2)
t −

(
s
(1)
t

)2)
a
(3)
t + 4

(
s
(3)
t +

(
s
(1)
t

)3
− 3s

(1)
t s

(2)
t

)
a
(2)
t ,

(39)
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s
(4)
t =

(
γta

(5)
t−1a

(1)
t − 4Σt

¯̄Ω
(1)
t,t−1a

(4)
t−1

)(
a
(1)
t

)3
+ 6

(
γta

(4)
t−1a

(2)
t − Σt

¯̄Ω
(2)
t,t−1a

(3)
t−1

)(
a
(1)
t

)2
+ 4

(
γta

(3)
t−1a

(3)
t − Σt

¯̄Ω
(3)
t,t−1a

(2)
t−1 − 2Σt

¯̄Ω
(1)
t,t−1a

(3)
t−1a

(2)
t

)
a
(1)
t

+

(
γt

(
a
(2)
t−1a

(4)
t + 3a

(3)
t−1

(
a
(2)
t

)2)
− Σt

¯̄Ω
(4)

t − 6Σt
¯̄Ω
(2)
t,t−1a

(2)
t−1a

(2)
t − 4Σt

¯̄Ω
(1)
t,t−1a

(2)
t−1a

(3)
t

)
+
(
s
(1)
t

)4
+ 4s

(1)
t s

(3)
t + 3

(
s
(2)
t − 2

(
s
(1)
t

)2)
s
(2)
t .

(40)

C Polynomial approximations of b
(r)
t and µ

(r)
t

C.1 First derivative of log f(αt|αt+1, y)

Here we derive an exact expression for h
(1)
t (αt;αt+1), the first derivative of log f(αt|αt+1, y) with respect to αt.

The case t = 1 is straightforward using Bayes’ rule. We have

∂ log f(α1|α2, y)

∂α1
=
∂ log f(y1|α1, α2)

∂α1
+
∂ log f(α2, α1)

∂α1

Recalling the definition of ψ
(p,q)
t (αt, αt+1) in (7), the first derivative of h1(α1;α2) is

h
(1)
1 (α1;α2) = ψ

(1,0)
1 (α1, α2) + c̄1 − Ω̄1,2α2 − Ω̄1,1α1. (41)

For t = 2, . . . , n− 1, we compute f(αt|αt+1, y) by marginalizing f(α1:t|αt+1, y):

f(αt|αt+1, y) =

∫
f(α1:t−1, αt|αt+1, y) dα1:t−1

∝ f(αt+1|αt)f(yt|αt, αt+1)c(αt),

(42)

where

c(αt) =

∫
f(αt|αt−1)f(yt−1|αt−1, αt)f(y1:t−2, α1:t−1) dα1:t−1.

Taking the logarithm of (42) and differentiating with respect to αt gives

h
(1)
t (αt;αt+1) =

∂ log c(αt)

∂αt
+
∂ log f(αt+1|αt)

∂αt
+
∂ log f(yt|αt, αt+1)

∂αt
. (43)

We use a development similar to Appendix C of McCausland [2012] to show that

∂ log c(αt)

∂αt
= E

[
∂ log f(αt|αt−1)

∂αt
+
∂ log f(yt−1|αt−1, αt)

∂αt

∣∣∣∣αt, y] .
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The first derivative ht(αt;αt+1) then becomes

h
(1)
t (αt;αt+1) =E

[
log f(αt|αt−1)

∂αt
+

log f(yt−1|αt−1, αt)
∂αt

∣∣∣∣αt, αt+1, y

]
+
∂ log f(αt+1|αt)

∂αt
+
∂ log f(yt|αt, αt+1)

∂αt

=E

[
log f(αt|αt−1)

∂αt
+

log f(αt+1|αt)
∂αt

∣∣∣∣αt, αt+1, y

]
+ E

[
log f(yt−1|αt−1, αt)

∂αt

∣∣∣∣αt, αt+1, y

]
+
∂ log f(yt|αt, αt+1)

∂αt
.

The first term above simplifies as in Appendix C of McCausland [2012]. We use (7) to finally derive

h
(1)
t (αt;αt+1) =c̄t − Ω̄t,tαt − Ω̄t,t+1αt+1 + ψ

(1,0)
t (αt, αt+1)

− Ω̄t−1,tµt−1|t(αt) + δt−1|t(αt),

(44)

where µt−1|t(αt) = E[αt−1|αt, y] and δt−1|t(αt) = E
[
ψ
(0,1)
t−1 (αt−1, αt) |αt, y

]
. The case t = n is similar, and we

obtain

h(1)n (αn) = c̄n − Ω̄n,nαn + ψ(1)
n (αn)− Ω̄n−1,nµn−1|n(αn) + δn−1|n(αn). (45)

C.2 Coefficients of the polynomial ∆t−1|t(αt)

We construct ∆t−1|t(αt), t = 2, . . . , n in two steps. We first approximate ψ
(0,1)
t−1 (αt−1, αt), as a function of αt−1,

by its second order Taylor series expansion around at−1|t(αt):

ψ
(0,1)
t−1 (αt−1, αt) ≈ ψ(0,1)

t−1 (at−1|t(αt), αt) + ψ
(1,1)
t−1 (at−1|t(αt), αt)(αt−1 − at−1|t(αt))

+ 1
2ψ

(2,1)
t−1 (at−1|t(αt), αt)(αt−1 − at−1|t(αt))2.

(46)

Taking conditional expectations of both sides of (46), given αt and y, and using Σt−1|t(αt) as an approximation

of E
[
(αt−1 − at−1|t(αt))2|αt, y

]
gives the approximation

δt−1|t(αt) ≈ψ
(0,1)
t−1 (at−1|t(αt), αt) + ψ

(1,1)
t−1 (at−1|t(αt), αt)(µt−1|t(αt)− at−1|t(αt))

+
1

2
ψ
(2,1)
t−1 (at−1|t(αt), αt)Σt−1|t(αt).

(47)

Now we define the polynomial ∆t−1|t(αt) as the R’th order Taylor series expansion of the right hand side of

(47):

∆t−1|t(αt)
.
=

R∑
r=0

∆
(r)
t−1
r!

(αt − at)r, (48)

where ∆
(r)
t−1 is the r’th derivative of the RHS of (47) with respect to αt, evaluated at at. We evaluate these

derivatives bottom up using Faà Di Bruno’s formula, equations (71) and (72), and Leibniz’s rule, equation (67).
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C.3 Coefficients of the Polynomial Bt|t+1(αt+1)

For t = 1, bt|t+1(αt+1) equals exactly at|t+1(αt+1). Thus, we have B
(r)
t = a

(r)
t , r = 0, . . . , R.

For t = 2, . . . , n− 1, by definition, bt|t+1(αt+1) is the root of h
(1)
t (αt;αt+1) = 0. We can approximate this

root, as a function of αt+1, using one iteration of the Newton-Raphson algorithm for root finding, from the

starting point at|t+1(αt+1):

bt|t+1(αt+1) ≈ at|t+1(αt+1)−
h
(1)
t (at|t+1(αt+1);αt+1)

h
(2)
t (at|t+1(αt+1);αt+1)

. (49)

We want to approximate the function bt|t+1(αt+1), not just perform the Newton-Raphson step for a particular

value of at|t+1. Our strategy will be to find an approximate Taylor expansion of the second term of the right

hand side around αt+1 = at+1.

We approximate the numerator and denominator, using H
(1)
t (αt;αt+1) and its derivative, both evaluated

at αt = at|t+1(αt+1). These are

H
(1)
t (at|t+1;αt+1) = c̄t − Ω̄t,tat|t+1 − Ω̄t,t+1αt+1 + ψ

(1,0)
t (at|t+1, αt+1)

− Ω̄t−1,tMt−1|t(at|t+1) + ∆t−1|t(at|t+1) (50)

H
(2)
t (at|t+1;αt+1) = −Ω̄t,t + ψ

(2,0)
t (at|t+1, αt+1)

− Ω̄t−1,tM
(1)
t−1|t(at|t+1) + ∆

(1)
t−1|t(at|t+1), (51)

where we suppress the argument of at|t+1(αt+1) to write at|t+1.

We compute total derivatives of H
(1)
t (at|t+1(αt+1);αt+1) and H

(2)
t (at|t+1(αt+1);αt+1) at αt+1 = at+1

using Faà di Bruno’s formula to compute the derivatives of Mt−1|t(at|t+1(αt+1)), at−1|t(at|t+1(αt+1)) and

∆t−1|t(at|t+1(αt+1)) with respect to αt+1, at αt+1 = at+1.

Based on equation (49), we define the following approximations B
(r)
t of b

(r)
t , r = 0, 1, 2, 3:

B
(r)
t

.
= a

(r)
t −

∂r

∂αrt+1

(
H

(1)
t (at|t+1(αt+1);αt+1)

H
(2)
t (at|t+1(αt+1);αt+1)

)∣∣∣∣∣
αt+1=at+1

. (52)

The second term on the right hand side of (52) is the r’th order derivative of a quotient, which we compute

using the quotient rule for derivatives, equation (68).

In practice, going beyond a third order approximation of bt|t+1(αt+1)− at|t+1(αt+1) does not justify the

computational cost and so we set B
(4)
t = a

(4)
t .
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For t = n, we approximate a value bn, not a function. We define, analogously, the following approximation

of bn:

Bn
.
= an −

H
(1)
n (an)

H
(2)
n (an)

. (53)

C.4 Coefficients of the polynomial Mt|t+1(αt+1)

Recall that µt|t+1(αt+1) = E[αt|αt+1, y]. We provide an approximation Mt|t+1(αt+1) of a Taylor expansion of

µt|t+1(αt+1) around αt+1 = at+1. We show in this subsection how to compute the coefficients of the resulting

fourth order polynomial.

McCausland [2012] suggests the following approximation for µt|t+1 − bt|t+1:

µt|t+1 − bt|t+1 ≈
1

2
h
(3)
t (bt|t+1;αt+1)

[
h
(2)
t (bt|t+1;αt+1)

]−2
(54)

As the mode bt|t+1 is the root of h
(1)
t (αt;αt+1), we have

h
(1)
t (bt|t+1;αt+1) = 0 (55)

Taking the derivative of (55) two times with respect to αt+1 gives

h
(2)
t (bt|t+1;αt+1)b

(1)
t|t+1 = Ω̄t,t+1 − ψ(1,1)

t (bt|t+1, αt+1) (56)

and

h
(3)
t (bt|t+1;αt+1)

(
b
(1)
t|t+1

)2
+ h

(2)
t (bt|t+1;αt+1)b

(2)
t|t+1 =− 2

dψ
(1,1)
t (bt|t+1, αt+1)

dαt+1

+ ψ
(1,1)
t (bt|t+1, αt+1)

(57)

Solve for h
(3)
t (bt|t+1;αt+1) in equation (57) and divide by the square of h

(2)
t (bt|t+1;αt+1) to obtain

h
(3)
t (bt|t+1;αt+1)(

h
(2)
t (bt|t+1;αt+1)

)2 =−
b
(2)
t|t+1/b

(1)
t|t+1

h
(2)
t (bt|t+1;αt+1)b

(1)
t|t+1

−
2dψ

(1,1)
t (bt|t+1, αt+1)/dαt+1 − ψ(1,1)

t (bt|t+1, αt+1)(
h
(2)
t (bt|t+1;αt+1)b

(1)
t|t+1

)2
(58)

Substitute the right hand side of equation (56) in (58) to obtain

µt|t+1 − bt|t+1 ≈−
1

2

b
(2)
t|t+1/b

(1)
t|t+1

Ω̄t,t+1 − ψ(1,1)
t (bt|t+1, αt+1)

− 1

2

2dψ
(1,1)
t (bt|t+1, αt+1)/dαt+1 − ψ(1,1)

t (bt|t+1, αt+1)(
Ω̄t,t+1 − ψ(1,1)

t (bt|t+1, αt+1)
)2 (59)
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Based on equation (59), we define our approximation Mt|t+1 of µt|t+1 as the Taylor series expansion of:

−1

2

B
(2)
t|t+1/B

(1)
t|t+1

Ω̄t,t+1 − ψ(1,1)
t (Bt|t+1, αt+1)

− 1

2

2dψ
(1,1)
t (Bt|t+1, αt+1)/dαt+1 − ψ(1,1)

t (Bt|t+1, αt+1)(
Ω̄t,t+1 − ψ(1,1)

t (Bt|t+1, αt+1)
)2 (60)

The derivatives of B
(2)
t|t+1/B

(1)
t|t+1 with respect to αt+1 are computed using the quotient rule for derivatives,

equation (68). Those of ψ
(1,1)
t (Bt|t+1, αt+1) and dψ

(1,1)
t (Bt|t+1, αt+1)/dαt+1 are computed using the Faà-Di-

Bruno formula, equations (71) and (72). Derivatives of the two main ratios in (60) are computed using the

quotient rule in equation (68). We compute M
(r)
t = M

(r)
t|t+1(at+1), r = 0, 1, 2 using (60).

In practice, going beyond a second order approximation of µt|t+1(αt+1)− bt|t+1(αt+1) does not repay the

computational cost and so we set M
(3)
t = B

(3)
t and M

(4)
t = a

(4)
t .

D Model derivatives

Here we show how to compute partial derivatives of ψt(αt, αt+1) and derivatives ψn(αn), for the ASV-Gaussian

and ASV-Student models. In our empirical applications, we compute ψ
(p,q)
t (αt, αt+1) up to orders P = 7 and

Q = 7 and ψ
(p)
n (αn) up to order P = 7.

D.1 ASV-Gaussian

Using (6), we can write

ψt(αt, αt+1) = −1

2

[
log(2π/β) + αt + β(ϕt − θut)2

]
, t = 1, . . . , n− 1, (61)

ψn(αn) = −1

2

[
log(2π) + αn + ϕ2

n

]
, (62)

where β
.
= (1− ρ2)−1, θ

.
= ρ/σ, ut

.
= αt+1 − dt − φαt and ϕt

.
= yt exp(−αt/2).

For t = 1, . . . , n− 1 and (p, q) 6= (0, 0) we have

ψ
(p,q)
t (αt, αt+1) =



− 1
2 −

β
2

(
ϕ̃t,p − 2θ2φut

)
q = 0, p = 1

−β2
(
ϕ̃t,p + 2θ2φ2

)
q = 0, p = 2

−β2 ϕ̃t,p q = 0, p ≥ 3

βθ (ϕt − θut) q = 1, p = 0

βθ
(
− 1

2ϕt + θφ
)

q = 1, p = 1

βθ
(
− 1

2

)p
ϕt q = 1, p ≥ 2

−βθ2 q = 2, p = 0

0 otherwise,

(63)
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where

ϕ̃t,p
.
= (−1)pϕ2

t −
(
−1

2

)p−2
θϕt

(
pφ+

1

2
ut

)
, t = 1, . . . , n− 1. (64)

For t = n,

ψ(p)
n (αn)(αn) =


− 1

2 −
1
2 ϕ̃n,p p = 1

− 1
2 ϕ̃n,p p ≥ 2,

(65)

where ϕ̃n,p = (−1)pϕ2
n.

D.2 ASV-Student

We use the definitions of β, θ, ut and ϕt from D.1. Using (11) we can write ψt(αt, αt+1), for t = 1, . . . , n− 1, as

ψt(αt, αt+1) = k + ψ1,t(αt, αt+1) + ψ2,t(αt) + ψ3,t(αt, αt+1), (66)

where k does not depend on αt and αt+1,

ψ1,t(αt, αt+1)
.
= −1

2
(θ2βu2t + αt), ψ2,t(αt)

.
= −(ν + 1) log d(αt),

ψ3,t(αt, αt+1)
.
= logm(z(αt, αt+1)), m(z) = 2

Γ
(
ν
2 + 1

)
Γ
(
ν+1
2

) zm1(z) +m2(z),

m1(z) = M

(
ν

2
+ 1;

3

2
; z2
)
, m2(z) = M

(
ν + 1

2
;

1

2
; z2
)
,

z(αt, αt+1) =
n(αt, αt+1)

d(αt)
, n(αt, αt+1) =

θβ√
2ν
utϕt, d(αt) =

√
1 +

β

ν
ϕ2
t .

Computing analytical expressions for high order partial derivatives of ψt(αt, αt+1) is daunting, but

fortunately we can avoid it. All we need to do is evaluate the derivatives at a given point (αt, αt+1), and for this,

we can use general purpose routines to combine derivatives of products, quotients and composite functions.

We first compute the derivatives of the third component ψ3,t(αt, αt+1) of the log-density of the ASV-Student

model. We do it bottom up using the following steps:

1. Evaluate n(αt, αt+1) and its derivatives with respect to αt and αt+1 up to orders P and Q:

n(p,q)(αt, αt+1) =



βθ√
2ν

(
− 1

2

)p
(2pφ+ ut)ϕt p ≥ 0, q = 0

βθ√
2ν

(
− 1

2

)p
ϕt p ≥ 0, q = 1

0 p ≥ 0, q ≥ 2.

2. Evaluate derivatives of (1 + β/νϕ2
t (αt)) with respect to αt up to order P :

dp

dαt

(
1 +

β

ν
ϕ2
t (αt)

)
= (−1)p

β

ν
ϕ2
t (αt), p = 0, . . . , P.
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3. Evaluate d(αt) and its derivatives with respect to αt, up to order P . Use derivatives of the square root

function, evaluated at (1 + β/νϕ2
t (αt)) and the derivatives evaluated in step 2, combining them using Faà

Di Bruno’s formula, equations (71) and (72).

4. Evaluate z = n/d and partial derivatives z(p,q)(αt, αt+1) up to order P and Q. Use the value n and partial

derivatives n(p,q)(αt, αt+1) computed at step (1), as well as the value d and derivatives d(p)(αt) computed

at step (3). For each p = 1, . . . , P , compute z(p,q)(αt, αt+1) using the quotient rule, equation (68).

5. Evaluate M(ν/2 + 1, 3/2, x) and partial derivatives M (0,0,p)(ν/2, 3/2, x) up to order P . We use the

property M (0,0,p)(a, b, x) = (a)k/(b)kM(a+ k, b+ k, x) and compute values of M(a, b, x) using the routine

gsl sf hyperg 1F1 in the GNU scientific library. Similarly, compute M((ν + 1)/2, 1/2, x) and partial

derivatives M (0,0,p)((ν + 1)/2; 1/2;x) up to order P .

6. Set m1(z) = M(ν/2 + 1, 3/2, z2) and compute P derivatives of m1(z) with respect to z. Use P derivatives

of M(ν/2 + 1, 3/2, x) with respect to x, computed in step 5 and P derivatives (only 2 are non-zero) of

x = z2 with respect to z, evaluated at z, combining them using the Faà Di Bruno’s rule, equations (71)

and (72). Similarly, set m2(z) = M((ν + 1)/2, 1/2, z2) and evaluate P derivatives of m2(z) with respect to

z.

7. Evaluate P derivatives of m(z) with respect to z using the derivatives evaluated at step 6, combining them

according to

m(p)(z) = 2
Γ
(
ν
2 + 1

)
Γ
(
ν+1
2

) (zm(p)
1 (z) + pm

(p−1)
1 (z)

)
+m

(p)
2 (z), p = 1, . . . , P.

8. Evaluate P derivatives of logm(z) with respect to z using the derivatives evaluated at step 7, and the

logarithm rule, equations (69) and (70).

9. Evaluate partial derivatives of ψ3,t(αt, αt+1) up to orders P and Q. Use derivatives of logm(z) with

respect to z computed in step 8 and partial derivatives of z(αt, αt+1) computed in step 4, combining them

according to the multivariate Faa-Di-Bruno rule defined in equations (75) and (76).

The first component, ψ1,t(αt, αt+1), is a quadratic function of αt and αt+1. Its derivatives, for (p, q) 6= (0, 0),

are

ψ
(p,q)
1,t (αt, αt+1) =



− 1
2θ

2βut p = 0, q = 1,

− 1
2θ

2β p = 0, q = 2,

− 1
2 (−φθ2βut + 1) p = 1, q = 0,

1
2φθ

2β p = 1, q = 1,

− 1
2φ

2θ2β p = 2, q = 1,

0 otherwise.
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Recall that ψ2,t(αt) = −(ν + 1) log d(αt). We compute derivatives of log d(αt) using the log rule in equations

(69) and (70). Derivatives of ψ2,t(αt) are simply −(ν + 1) times the derivatives of log d(αt).

The special case of t = n is easily handled. We have

ψn(αn) = log
Γ
(
ν+1
2

)
Γ(ν2 )

√
νπ
− 1

2

[
αn + (ν + 1) log

(
1 +

ϕ2
n

ν

)]
,

whose derivatives are the same as those of ψ2,t except for β replaced by 1.

E Rules for derivatives of compound functions

In this paper, we often use automatic rules for evaluating multiple derivatives of compound functions at a point.

The rules combine multiple derivatives of component functions, also evaluated at points. This Appendix gathers

these rules together.

For univariate functions f and g, we list rules for derivatives of the product fg, the quotient f/g, the

composition f ◦ g and log g. We also give derivatives of f ◦ g for f : R→ R and g : R2 → R and partial derivatives

of f ◦ g for f : R2 → R and g : R→ R2.

We have coded all of these rules as routines. Values passed to the routines are vectors (or matrices) giving

multiple derivatives (or partial derivatives) of f and g, evaluated at particular points. The routines return a

vector (or a matrix) giving multiple derivatives (or partial derivatives) of a compound function, evaluated at

a point. For example, the routine computing P derivatives of the product fg at a point x takes as input the

integer P , a P -vector with the first P derivatives of f at x and a P -vector with the first P derivatives of g at

x. It returns a P -vector with the first P derivatives of fg at x.

E.1 Univariate functions

Let x be a point in R and f and g be two univariate functions, continuously differentiable at x up to order P .

Leibniz rule for products

The product fg is differentiable up to order P at x and

(fg)(p)(x) =

p∑
r=0

(
p

r

)
f (r)(x)g(p−r)(x), p = 1, . . . , P. (67)

Quotient rule

Applying Leibniz’ rule to the product of f/g and g gives the recursive rule

(f/g)(p)(x) =
1

g(x)

[
f (p)(x)−

p−1∑
r=0

(
p

r

)
(f/g)(r)(x)g(p−r)(x)

]
, p = 1, . . . , P. (68)
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Log rule

Let h = log f and suppose that f > 0. Then h is differentiable up to order P . Applying the quotient rule to

h(1)(x) =
f (1)(x)

f(x)
(69)

gives

h(p)(x) =
1

f(x)

[
f (p)(x)−

p−1∑
r=1

(
p− 1

r − 1

)
h(r)(x)f (p−r)(x)

]
, p = 2, . . . , P. (70)

Together, equations (69) and (70) give the first P derivatives of log(f(x)).

Faà di Bruno’s rule for composite functions

Now let x be a point in R, g be a univariate function, P times differentiable at x, and f be a univariate function,

P times differentiable at g(x). Faà di Bruno’s rule gives the p’th derivative of f ◦ g at x as

(f ◦ g)(p)(x) =

p∑
r=1

f (r)(g(x))Bp,r(g
(1)(x), . . . , g(p−r+1)(x)), (71)

where the Bp,r(z1, . . . , zp−r+1) are Bell polynomials. The Bell polynomials are a triangular array of polynomials

that can be computed using the boundary conditions B0,0(z1) = 1 and Bp,0(z1, . . . , zp+1) = 0, p > 0, and the

recursion

Bp,r(z1, . . . , zp−r+1) =

p−1∑
i=r−1

(
p− 1

i

)
zp−iBi,r−1(z1, . . . , zi−r), r = 1, . . . , p. (72)

For example, we have B1,1(z1) = z1B0,0(z1) = z1, which gives (f ◦ g)(1)(x) = f (1)(g(x))g(1)(x), the chain

rule. For the second derivative, we compute B2,1(z1, z2) = z2B0,0(z1) + z1B1,0(z1, z2) = z2 and B2,2(z1) =

z1B1,1(z1) = z21 , which gives

(f ◦ g)(2)(x) = f (1)(g(x))g(2)(x) + f (2)(g(x))
(
g(1)(x)

)2
.

E.2 Multivariate functions

Savits [2006] generalizes Faà di Bruno’s rule to multivariate functions. Equations (3.1) and (3.5) in that paper

give multiple partial derivatives of f ◦ g, where f : Rm → R and g : Rd → Rm. We show how to compute partial

derivatives for two special cases.

Case d = 1 and m = 2

Here (f ◦ g)(x) = f(g1(x), g2(x)), where f is a scalar valued function with continuous partial derivatives up to

orders P and P , and g1 and g2 are scalar-valued functions, continuously differentiable up to order P . The value
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of the p’th derivative of f ◦ g at is

(f ◦ g)(p)(x) =

p∑
r=0

p−r∑
s=max{0,1−r}

f (r,s)(g1(x), g2(x))vp,(r,s), (73)

where the values vp,(r,s) are defined by the boundary conditions v0,(0,0) = 1 and vp,(0,0) = 0 for p > 0, and the

recursion

vp,(r,s) =

p−1∑
i=r+s−1

(
p− 1

i

)[
g
(p−i)
1 (x)vi,(r−1,s) + g

(p−i)
2 (x)vi,(r,s−1)

]
. (74)

We have a routine taking as input the first P derivatives of g1 at x, the first P derivatives of g2 at x, and the

partial derivatives f (p,q) at (g1(x), g2(x)) up to orders P and P , returning the first P derivatives of f(g1(x), g2(x))

at x.

Case d = 2, m = 1

Here (f ◦ g)(x) = f(g(x1, x2)), where x1 and x2 are scalars, f is continuously differentiable up to order P +Q,

and g is a scalar-valued function with continuous partial derivatives up to orders P and Q. The values of the

derivatives of f ◦ g at (x1, x2) are computed using

(f ◦ g)(p,q)(x1, x2) =

p+q∑
r=1

f (r)(g(x1, x2))v(p,q),r, (75)

where the values v(p,q),r are defined by the conditions v(0,0),0 = 1 and v(p,q),0(x1, x2) = 0 for (p, q) 6= (0, 0),

v(p,q),r = 0 for r < 0 or p+ q < r and the recursion

v(p,q),r =


∑p−1

i=r−1
(
p−1
i

)
g(p−i,0)(x1, x2)v(i,0),r−1 q = 0, p ≥ 1∑p

i=0

∑q−1
j=0

(
p
i

)(
q−1
j

)
g(p−i,q−j)(x1, x2)v(i,j),r−1 q ≥ 1, p ≥ 0.

(76)

We have a routine taking as input the partial derivatives g(p,q) at (x1, x2), up to orders P and Q and the first

P +Q derivatives of f at g(x1, x2), returning the partial derivatives (f ◦ g)(p,q) at (x1, x2), up to orders P and

Q.
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S. Frühwirth-Schnatter. Data augmentation and dynamic linear models. Journal of Time Series Analysis, 15:

183–202, 1994.
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Notation Description
ψt(αt, αt+1) log f(yt|αt, αt+1)
ψp,qt (αt, αt+1) order (p, q) derivative of ψt(αt, αt+1) with respect to αt and αt+1.

ψn(αn) log f(yn|αn)
ψpn(αn) order p derivative of ψn(αn) with respect to αn

a = (a1, . . . , an) mode of log f(α|y)
Σt Var(αt|αt+1, y) according to Gaussian approximation of α|y

(a1|t+1(αt+1), . . . , at|t+1(αt+1)) mode of f(α1, . . . , αt|αt+1, y)
Σt|t+1(αt+1) Var(αt|αt+1, y) according to Gaussian approximation of

α1, . . . , αt|αt+1, y
At|t+1(αt+1) polynomial approximation of at|t+1(αt+1)
st|t+1(αt+1) log Σt|t+1(αt+1)

a
(r)
t order r derivative of at|t+1(αt+1) at αt+1 = at+1

s
(r)
t order r derivative of st|t+1(αt+1) at αt+1 = at+1.

bt|t+1(αt+1) mode of f(αt|αt+1, y)

bt, b
(r)
t value, order r derivative of bt|t+1(αt+1) at αt+1 = at+1

bn mode of f(αn|y)
Bt|t+1(αt+1) polynomial approximation of bt|t+1(αt+1)

Bt, B
(r)
t value, order r derivative of Bt|t+1(αt+1) at αt+1 = at+1

µt|t+1(αt+1) E[αt|αt+1, y]

µt, µ
(r)
t value, order r derivative of µt|t+1(αt+1) at αt+1 = at+1

Mt|t+1(αt+1) polynomial approximation of µt|t+1(αt+1)

Mt,M
(r)
t value, order r derivative of Mt|t+1(αt+1) at αt+1 = at+1

h
(r)
t (αt;αt+1) order r derivative of log f(αt|αt+1, y) with respect to αt

H
(r)
t (αt;αt+1) approximation of h

(r)
t (αt;αt+1)

h
(r)
t (αn) order r derivative of log f(αn|y)

H
(r)
n (αn) approximation of h

(r)
t (αn)

Table 1: Main notation used in the paper
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Parameters Mean Std NSE RNE
S& P500:2000-2012

ᾱ:HIS -9.1865 0.1092 1.1519e-3 0.9725
ᾱ:HIM -9.1821 0.1107 1.7398e-3 0.3160
ᾱ:OCSN -9.1583 0.1424 1.6240e-3 0.7842
φ:HIS 0.9819 0.0029 3.0280e-5 0.9589
φ:HIM 0.9820 0.0029 4.0109e-5 0.4070
φ:OCSN 0.9816 0.0030 3.5407e-5 0.2907
σ:HIS 0.1777 0.0138 1.3714e-4 1.0234
σ:HIM 0.1773 0.0138 2.2144e-4 0.3029
σ:OCSN 0.1830 0.0146 1.7230e-4 0.2139
ρ:HIS -0.7986 0.0345 2.9533e-4 1.4057
ρ:HIM -0.7985 0.0343 4.7501e-4 0.4071
ρ:OCSN -0.8140 0.0353 5.3463e-4 0.3146

S& P500:1980-1987
ᾱ:HIS -9.5167 0.1573 2.0113e-3 0.9082
ᾱ:HIM -9.5181 0.1583 3.1266e-3 0.2002
ᾱ:OCSN -9.5029 0.3378 3.4767e-3 0.7428
φ:HIS 0.9751 0.0080 8.9356e-5 0.9000
φ:HIM 0.9752 0.0081 1.3592e-4 0.2765
φ:OCSN 0.9776 0.0083 1.8947e-4 0.1506
σ:HIS 0.1524 0.0200 1.9681e-4 0.9871
σ:HIM 0.1521 0.0201 3.2814e-4 0.2919
σ:OCSN 0.1394 0.0203 5.8443e-4 0.0945
ρ:HIS -0.2032 0.0957 9.2493e-4 1.0647
ρ:HIM -0.2044 0.0950 1.3265e-3 0.4005
ρ:OCSN -0.2007 0.1005 1.8453e-3 0.2374

TOPIX
ᾱ:HIS -8.8545 0.1080 1.1533e-3 1.2014
ᾱ:HIM -8.8545 0.1083 1.5951e-3 0.4609
ᾱ:OCSN -8.8426 0.2172 2.0867e-3 0.8574
φ:HIS 0.9574 0.0156 1.5893e-4 0.9537
φ:HIM 0.9576 0.0160 2.0428e-4 0.4769
φ:OCSN 0.9520 0.0185 3.9992e-4 0.1664
σ:HIS 0.1408 0.0254 2.5871e-4 0.8657
σ:HIM 0.1414 0.0258 2.8818e-4 0.6277
σ:OCSN 0.1387 0.0266 5.9850e-4 0.1556
ρ:HIS -0.3833 0.1188 1.2561e-3 0.8503
ρ:HIM -0.3833 0.1195 1.7136e-3 0.3801
ρ:OCSN -0.3715 0.1231 2.6536e-3 0.1792

Table 2: ASV-Gaussian parameter estimation using the HESSIAN method and the OCSN procedure on S&P500s’
data and TOPIX data.
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Parameters Mean Std NSE RNE
S& P 500:2000-2012

ᾱ:HIS -9.2493 0.1092 1.0716e-3 1.1632
ᾱ:HIM -9.2469 0.1102 1.8512e-3 0.2769
φ:his 0.9826 0.0028 3.1016e-5 0.9160
φ:him 0.9826 0.0028 4.0811e-5 0.3687
σ:his 0.1752 0.014 1.5122e-4 0.9369
σ:him 0.1751 0.014 2.5636e-4 0.2298
ρ:his -0.8255 0.0329 3.3562e-4 1.0204
ρ:him -0.8245 0.0334 5.4797e-4 0.2899
ν:his 21.1773 6.1814 5.7534e-2 1.2809
ν:him 21.1636 6.1116 1.0145e-1 0.2835

S& P 500: 1980-1987
ᾱ:HIS -9.7230 0.1865 2.8719e-3 1.0496
ᾱ:HIM -9.7224 0.1806 3.1769e-3 0.2525
φ:HIS 0.9851 0.0054 6.8752e-5 0.9663
φ:HIM 0.9850 0.0053 7.9290e-5 0.3513
σ:HIS 0.1061 0.0164 1.7719e-4 1.1002
σ:HIM 0.1065 0.0164 3.0925e-4 0.2204
ρ:HIS -0.2440 0.1224 1.6006e-4 0.8261
ρ:HIM -0.2493 0.1222 2.2437e-3 0.2318
ν:HIS 9.8647 2.1622 2.4734e-2 0.9722
ν:HIM 9.9128 2.1828 3.6789e-2 0.2750

TOPIX
ᾱ:HIS -8.9488 0.1156 1.5983e-3 0.9672
ᾱ:HIM -8.9506 0.1115 1.9474e-3 0.2560
φ:HIS 0.9624 0.0142 1.7252e-4 0.8727
φ:HIM 0.9621 0.0144 2.2029e-4 0.3336
σ:HIS 0.1261 0.0242 2.6775e-4 0.9570
σ:HIM 0.1266 0.0240 3.7636e-4 0.3188
ρ:HIS -0.4194 0.1285 1.3790e-4 1.1266
ρ:HIM -0.4191 0.1236 2.2023e-3 0.2461
ν:HIS 20.6041 7.6904 8.6997e-2 0.9573
ν:HIM 20.4777 7.7394 1.4048e-1 0.2371

Table 3: ASV-Student parameter estimation using the HESSIAN method, Independence Metropolis-Hastings
and Importance Sampling, on S&P500s and TOPIX data.


