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Abstract

Three context effects pertaining to stochastic discrete choice have attracted a lot of

attention in Psychology, Economics and Marketing: the similarity effect, the compromise

effect and the asymmetric dominance effect. Despite this attention, the existing literature

is rife with conflicting definitions and misconceptions. We provide theorems relating

different variants of each of the three context effects, and theorems relating the context

effects to conditions on discrete choice probabilities, such as random utility, regularity, the

constant ratio rule, and simple scalability, that may or may not hold for any given discrete

choice model. We show how context effects at the individual level can sometimes aggregate

to context effects at the population level. Importantly, we offer this work as a field guide

for researchers to sharpen empirical tests and aid future development of choice models.

Keywords: context effects, similarity effect, compromise effect, asymmetric

dominance, random utility, regularity, common ratio, simple scalability
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An Illustrated Guide to Context Effects

Introduction

Across the many disciplines that study decision making and choice, the term context

effect broadly refers to how preferences between alternatives can systematically change

when (typically non-preferred) alternatives are added to the choice set under consideration.

Such behavior can call into question standard models of choice and suggest new directions

for theoretic development. This article focuses on three well studied context effects relevant

to the study of stochastic discrete choice: the similarity, compromise, and asymmetric

dominance effects.

There is a vast empirical literature documenting various combinations of context

effects across many different choice settings, including: consumer choice (e.g., Berkowitsch

et al., 2014; Doyle et al., 1999), policy decisions (Herne, 1997), intertemporal choice (Gluth

et al., 2017), and perceptual stimuli (Trueblood, Brown, Heathcote, & Busemeyer, 2013).

Context effects have also been observed in the animal kingdom. For example, researchers

have observed monkeys (Parrish et al., 2015), felines (Scarpi, 2011), and insects (Latty &

Trueblood, 2020) exhibiting phantom decoy effects (where the decoy alternative is not

available for selection).

Despite this interest, the empirical literature on context effects is largely

disconnected and somewhat contradictory, with some context effects failing to be observed,

or, in some cases, reversing their direction altogether (e.g., Spektor et al., 2018). Spektor

et al. (2021) provide a comprehensive overview and synthesis of this contradictory

empirical literature. To briefly summarize, they argue that whether or not a particular

context effect manifests may depend upon three broad categories referring to the nature of

the choice environment.

1. The spatial arrangement of the choice stimuli. As one example, Cataldo and Cohen

(2018) demonstrated that the robustness and direction of some context effects depend
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on whether the choice stimuli is presented in tabular formats that encourage either

by-alternative or by-attribute comparisons.

2. Whether the stimuli are abstract or concrete in nature. There is good evidence that

context effects can manifest when the choice alternatives are defined via concrete,

clearly understood and easily comparable attributes (e.g., numerical monetary

values). However, the evidence for context effects becomes murkier when the choice

alternatives become more abstract in nature (e.g., rectangles of varying sizes; Spektor

et al., 2018).

3. How much time is available for individuals to make choices and how that time is

controlled. Generally speaking, context effects are more robust when decision makers

have more time to deliberate (Spektor et al., 2021). Cataldo and Cohen (2021)

provide a comprehensive analysis of time constraints on context effects (also see

Molloy et al., 2019).

Given the many variables that impact the presence (or absences) of context effects, Spektor

et al. (2021) conclude that a deeper understanding of how choice alternatives are

cognitively represented is an important direction for future theory development.

Trueblood (2022) presents a theoretic synthesis of major competing theories of

multi-alternative, multi-attribute choice that can account for various combinations of

context effects. By focusing on dynamic theories of choice, Trueblood concludes that some

of the disparate empirical observations in the study of context effects can be explained by

changes in attention and attentional processes. Relatedly, there is growing work examining

context effects from a neural perspective, focusing on value-based cognitive systems

(Busemeyer et al., 2019; Gluth et al., 2020; Gluth et al., 2018).

In addition to the issues raised above, we argue that the literature on context effects

is further complicated by inconsistencies in how context effects are defined, tested, and

ultimately related to common decision models, such as random utility. To this end, we
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develop, under a universal notation, all relevant context effect definitions and known

relations to a set of fundamental choice properties, which includes regularity, the

common-ratio rule, and simple scalability. This section of the article can be considered as a

precise tutorial review for readers interested in studying context effects. We also provide

new theoretic results on how these context effects relate to one another and fundamental

choice properties. We also explore how context effects at the individual level can sometimes

aggregate to context effects at the population level. While we are certainly not the first to

examine individual-population relationships among context effects, see Liew et al. (2016)

and Katsimpokis et al. (2022), our results bring additional precision about which

definitions of various context effects will aggregate. Altogether, we provide a

comprehensive guide for investigating context effects, one that may help bring further

clarity to the study of context effects.

Notation

We use the following notation throughout the paper. Let U = {x1, . . . , xn} be a

finite universe or master set of choice objects. When faced with a non-empty choice set

A ⊆ U , a decision maker (DM) chooses a single object from A. The probability that the

DM chooses x ∈ A is denoted PA(x). A random choice structure (RCS) on a master set U

is the complete specification of the PA(x), x ∈ A ⊆ U , and is denoted P . For distinct

x, y ∈ U , we use the shorthand notation pxy to mean P{x,y}(x). We denote by ∆(U) the set

of all RCSs on U ; it is a Cartesian product of unit simplices of various dimensions.

Table 1 gives an example of an RCS on U = {x, y, z} by specifying a complete list of

choice probabilities on the non-empty subsets of U . The singleton choice probabilities in the

first three rows are, of course, degenerate, but it is useful to include them in the definition

of an RCS so that conditions like those in equation (1) below have concise expressions.

Figure 1 gives a graphical representation of the same RCS using a Barycentric

coordinate system. Each point in the triangle xyz is a unique convex combination
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λxx + λyy + λzz of the vertices x, y and z, where λx, λy, λz ≥ 0 and λx + λy + λz = 1. The

vector (λx, λy, λz) gives the Barycentric coordinates of the point. Thus, the vertices x, y

and z have Barycentric coordinates (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively. Since xyz is

equilateral, the distances of the point (λx, λy, λz) to the sides yz, xz and xy of the triangle

are fractions λx, λy and λz, respectively, of the height of the triangle.

We will be representing probability vectors on doubleton and tripleton choice sets as

points in Barycentric coordinates. Here, for example, the ternary probability vector PU(·)

in the final row of Table 1 is represented by a solid dot in the interior of the triangle in

Figure 1, with Barycentric coordinates (PU(x), PU(y), PU(z)) = (0.6, 0.1, 0.3). The lengths

of the solid light grey line segments joining the point (PU(x), PU(y), PU(z)) to the sides yz,

xz and xy of triangle xyz are fractions 0.6, 0.1 and 0.3, respectively, of the height of xyz,

as can easily be seen using the light grey dashed grid lines.

We represent the binary choice probabilities in rows four to six of Table 1 as points

on the boundary of triangle xyz in Figure 1. The hollow dot on the left side of the triangle

gives the choice probabilities pxy = 0.7 and pyx = 1 − pxy = 0.3. It is the convex

combination pxyx + pyxy of vertices x and y, and has Barycentric coordinates (pxy, pyx, 0).

Similarly, the hollow dot on the right side gives the choice probabilities pyz and pzy; and

the hollow dot on the base gives pxz and pzx. We adopt the convention that binary

probabilities are indicated by hollow dots and ternary probability vectors by solid dots, so

we can tell the difference between a binary probability and a ternary probability vector

that happens to be on the boundary of the triangle.

We distinguish between two different interpretations of a RCS. An individual RCS

governs the choices of a single individual; a population RCS, those of a random sample of

individuals from a population. Note that if each individual in a population is governed by

an individual RCS, which may be degenerate, then the population RCS will be a convex

combination of individual RCSs: each population choice distribution PA(·), A ⊆ U , is a

mixture—with random sampling from the population being the common mixing
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A PA(x) PA(y) PA(z)

{x} 1.0

{y} 1.0

{z} 1.0

{x, y} 0.7 0.3

{y, z} 0.6 0.4

{x, z} 0.8 0.2

{x, y, z} 0.6 0.1 0.3
Table 1

A random choice structure on U = {x, y, z}.

distribution across choice sets A—of the various individual PA(·).

Models for discrete choice and their properties

We will use the term discrete choice model to refer to any model specifying an RCS,

directly or indirectly. Examples of indirect specifications include random utility models

such as multinomial probit models as well as sequential elimination models such as

Elimination by Aspects (EBA) models. In these examples, choice probabilities are not

specified directly but are derived from the specification of a parametric random choice

process and cannot be expressed as functions of the model parameters in closed form.

Often in the literature, the term “discrete choice model” refers to the specification (direct

or indirect) of an RCS up to a vector of parameters; that is, the specification of a set of

models, with each model specifying an RCS. To make a clear distinction, we will call such a

specification a class of discrete choice models. So for example, while many might refer to

“the logit model” as “a discrete choice model”, we will refer to logit as a class of models.

Over the last several decades, many conditions on choice probabilities, including

various kinds of stochastic transitivity, regularity and simple scalability have been studied
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Figure 1

A random choice structure on U = {x, y, z} as points in a Barycentric coordinate system.

(see Fishburn, 1999, for a thorough survey). For a given discrete choice model and a given

condition, the model either satisfies the condition or it doesn’t. When we say that a class

of discrete choice models satisfies some condition, we mean that every model in the class

satisfies that condition.

We will emphasize conditions that are targets of criticism (for being unrealistic) in

the context effects literature. Thus, our discussion is organized around two properties: (i)

regularity, a property of all random utility models that is inconsistent with the asymmetric

dominance effect, and (ii) the constant ratio rule, a property of multinomial logit models

that is inconsistent with the similarity and compromise effects. We discuss regularity and

related properties in Section Regularity and random utility immediately below, then the

constant ratio rule and related properties in Section The constant ratio rule and simple

scalability.
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Regularity and random utility

Most classes of discrete choice models in wide use in Economics and Marketing (and

many, but fewer, in Psychology) satisfy a condition known as random utility. We will

define this condition, but we first need to define a random utility model.

Definition 1 A random utility model (RUM) for a master set U is a probability space

(Ω, F , µ), where Ω is a sample space, F is an event space and µ is a probability measure on

F ; and a measurable function u : U × Ω → R, where µ is non-coincident, meaning that for

all distinct x, y ∈ U ,

µ ({ω ∈ Ω: u(x, ω) = u(y, ω)}) = 0.

We call u a utility function; its maximization over the available options governs

choice in state ω ∈ Ω. Non-coincidence rules out ties. Henceforth, we will denote a RUM

by the utility function u, suppressing notation for (Ω, 2Ω, µ). A RUM u for U induces the

RCS P (u) through the construction

P
(u)
A (x) = µ

(
{ω ∈ Ω: u(x, ω) = max

y∈A
u(y, ω)}

)
, x ∈ A ⊆ U.

We say that a RCS P satisfies random utility if it can be induced by a random utility

model. This is a restrictive condition; Block and Marschak (1960) show that the following

set of linear inequalities is necessary for random utility: for all non-empty A ⊆ U and all

x ∈ A, ∑
B : A⊆B⊆U

(−1)|B\A|PB(x) ≥ 0. (1)

Provided P satisfies random utility, the left hand side of the inequality is, for given x and

A, the probability of x having greater utility than each of the other elements of A and less

utility than each of the elements of U\A. Falmagne (1978) shows that this set of

inequalities is also sufficient. McCausland and Marley (2013) summarize what is known

about how random utility relates to other conditions on choice probabilities, and illustrate
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how strong a condition it is, in terms of its low prior probability as an event in ∆(U), for a

large class of prior distributions on ∆(U).

Examples of random utility models include multinomial logit, multinomial probit,

mixed multinomial logit, and generalized extreme value models. In these examples and

others, the specification of a discrete choice model proceeds by describing a random utility

model and then computing—often numerically—the induced choice probabilities. However,

there are other discrete choice models that are more naturally specified in some other way,

but which satisfy random utility nonetheless; one can check the conditions in (1) without

actually constructing a random utility model. For example, Tversky (1972a) shows that the

class of Elimination By Aspects (EBA) models, introduced by Tversky (1972b), satisfies

random utility, although EBA choice probabilities are usually derived as the result of a

random sequential choice process.

Because the term “context effect” is open to interpretation, it will be useful to

carefully examine the way in which random utility models—and by extension, their

induced choice probabilities—are context invariant. In the definition of a random utility

model, the utility distribution does not depend on the choice set offered. This is one kind

of context invariance, and it is what gives content to the random utility condition. It is

important to understand, however, that this does not imply that a so-called context effect

is inconsistent with random utility. The similarity and compromise effects, as defined by

Tversky (1972b) and Tversky and Simonson (1993), respectively, are both consistent with

random utility, as we show below. In fact, we have just seen that EBA models, introduced

by Tversky (1972b) specifically to account for the similarity effect, satisfy random utility.

Other classes of models generate choice probabilities in an explicitly context

dependant manner. An example where individual models may or may not satisfy random

utility, depending on the universe of choice objects, is the random regret minimization

model of Chorus (2010). In simulations, not reported here but using R code available at

10.6084/m9.figshare.21791186, we found regions of a variable object’s attribute space for
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which choice probabilities satisfy random utility and other regions for which they do not.

Davis-Stober et al. (2017) provide a set of models which do or do not satisfy random utility

depending upon their parametric specifications.

A weaker condition than random utility is regularity, the condition that adding

objects to a choice set cannot increase choice probabilities of the objects already in the set.

Definition 2 A RCS P satisfies regularity if for all x ∈ A ⊂ B ⊆ U ,

PA(x) ≥ PB(x). (2)

The regularity condition is relevant because it is both a consequence of random utility and

(transparently) inconsistent with the original (i.e. the binary-ternary version, as defined

below) asymmetric dominance effect.

Much of the evidence against random utility comes from the literature on the

asymmetric dominance effect, where inequalities of the form (2), for particular choice sets

A and B, are tested and often rejected: Rieskamp et al. (2006) survey empirical violations

of five “consistency principles” in economics, regularity is the only one of these principles

that is necessary for random utility, and the asymmetric dominance effect is the only

empirical evidence they document against regularity.

There is also some literature on other kinds of tests, either direct tests of random

utility or tests of other necessary conditions. Regenwetter et al. (2011) test a condition on

binary choice probabilities called the triangle inequality, a condition that is itself implied

by regularity. Using experimental binary choice data for 18 participants, they find strong

evidence against the triangle inequality for one participant (also see Cavagnaro &

Davis-Stober, 2014). McCausland and Marley (2014) and McCausland et al. (2020) jointly

test the full set of necessary and sufficient conditions for random utility in (1). Using a

subset of the data in Regenwetter et al. (2011), McCausland and Marley (2014) find

moderate evidence against random utility for the same participant and mild evidence

against for another participant. Using experimental choice data featuring choice from all
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binary and larger subsets of a master set McCausland et al. (2020) find strong evidence

against random utility for four participants out of 141.

In some cases, it will be convenient to speak of random preference models, which are

very similar to random utility models for finite master sets. In a random preference model,

a random strict preference (or ranking) replaces the random vector of utility values in a

random utility model. A random preference model induces choice probabilities when a

decision maker chooses the highest ranked object (rather than the object with the highest

utility) from a given choice set. For a finite master set U , the discrete choice models that

can be induced by a random preference are the same ones that can be induced by a

random utility model (see Marley & Regenwetter, 2018). Analogous to the definition of a

random utility model and the construction of a RCS from one, we have the following:

Definition 3 A random preference model (RPM) on a master set U is a probability space

(R, 2R, π) where R is the set of strict linear orders on U .

We use the notation ≻ ∈ R to denote an outcome, so that, for example,

π({≻ ∈ R : x ≻ y}) = ∑
{≻∈R : x≻y} π({≻}) is the probability that the fixed object x ∈ U is

ranked above (i.e., is preferred to) the fixed object y ∈ U , y ̸= x.

A random preference model with random binary relation ≻ induces the RCS P (≻)

through the construction

P
(≻)
A (x) = π ({≻ ∈ R : x ≻ y for all y ∈ A\{x}}) , x ∈ A ⊆ U.

The constant ratio rule and simple scalability

A second pair of conditions targeted by the context effects literature is the constant

ratio rule and simple scalability. The constant ratio rule underlies the multinomial logit

model, a model that has been widely used since the onset of the context effects literature

and is inconsistent with all three context effects, as they are defined in the seminal context

effect articles outlined in Section The Seminal Papers below.
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Definition 4 (Tversky, 1972b) P satisfies the constant ratio rule if for all x, y ∈ A,

pxy

pyx

= PA(x)
PA(y) ,

whenever the denominators do not vanish.

The term independence of irrelevant alternatives (or IIA) is commonly used, especially in

economics, to mean the same thing, although the term has other meanings: for example,

Ray (1973) documents three different conditions with the IIA name and clarifies the

relationships among them. To avoid ambiguity or confusion, we will use the term constant

ratio rule.

If, in addition to the constant ratio rule, we also require all choice probabilities to

be positive, we get the class of multinomial logit models. The constant ratio rule is a

consequence of Luce’s choice axiom, introduced in Luce (1959), but because this axiom

does not rule out choice probabilities equal to zero, there are models satisfying Luce’s

choice axiom that are not multinomial logit models.

Many theoretical and empirical problems with the constant ratio rule were raised

before the seminal papers in the context effect literature. Some of the theoretical

arguments and empirical evidence against the constant ratio rule also apply to a weaker

condition, called simple scalability.

Definition 5 (Krantz, 1964) P satisfies simple scalability if there exists a function

u : U → R and functions F2 : R2 → R, F3 : R3 → R, . . . , F|U | : R|U | → R such that for all

A = {x, y, . . . , z} ⊆ U ,

PA(x) = F|A|(u(x), u(y), . . . , u(z)),

where each Fi is increasing in its first argument, and strictly so if PA(x) < 1; and

decreasing in its other arguments, and strictly so if PA(x) > 0.

Tversky (1972b) shows that simple scalability is equivalent to the following

condition:
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Definition 6 (Tversky, 1972b) P satisfies order independence if for all A, B ⊆ U ,

x, y ∈ A − B and z ∈ B

PA(x) ≥ PA(y) ⇔ PB∪{x}(z) ≤ PB∪{y}(z)

provided the choice probabilities on the two sides of either inequality are not both 0 or 1.

The order independence condition can be seen as an ordinal version of the constant ratio

rule. Since it is a condition on choice probabilities, it allows for statistical testing of simple

scalability and the exploration of the logical relationship between simple scalability and

various context effects.

One of the first theoretical counterexamples1 to simple scalability was provided by

Debreu (1960) in a review of Luce (1959). Another well-known counterexample is the

Bicycle/Pony example provided in Luce and Suppes (1965), attributed there to L.J.

Savage. The Red bus/Blue bus example of McFadden (1974) appears shortly after Tversky

(1972b), but it is a particularly well known one.

Tversky (1972b) cites the following papers as providing empirical evidence against

simple scalability: Becker et al. (1963), Chipman (1960), Coombs (1958), Krantz (1967),

and Tversky and Russo (1969). Luce (1977) provides an even more extensive list and some

details.

Illustrations

Figure 2 illustrates how regularity, the constant ratio rule, and simple scalability

constrain random choice structures. Again, we consider a RCS on the set U = {x, y, z}. We

use a Barycentric coordinate system to plot choice probability vectors and sets of them.

We fix the binary probabilities pxz = 0.45 (point A) and pyz = 0.35 (point B) and show the

values of pxy and PU(·) that are consistent with the fixed pxz and pyz, under each of

regularity, the constant ratio rule and simple scalability.

1 A theoretical counterexample to a given condition is a specification of choice probabilities, claimed to be

plausible, that is inconsistent with the condition.
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Regularity, the constant ratio rule and simple scalability

First, suppose that regularity holds. Then pxz is an upper bound for PU(x), and its

complementary probability pzx = 1 − pxz is an upper bound for PU(z). The set of ternary

probability vectors PU(·) satisfying PU(x) ≤ pxz and PU(z) ≤ pzx is the parallelogram

A′AA′′y. Likewise, pyz and pzy give upper bounds on PU(y) and PU(z), and the set of

ternary probability vectors satisfying PU(y) ≤ pyz and PU(z) ≤ pzy is the parallelogram

B′BB′′x. The intersection of the two parallelograms, the inverted equilateral triangle in

solid lines, is the boundary of the set of ternary probability vectors PU(·) consistent with

pxz = 0.45 and pyz = 0.35 under regularity.

With pxz and pyz still fixed, we now relax regularity and suppose that the constant

ratio rule holds. Then given pxz = 0.45, the ternary probability PU(·) must fall on the line

segment Ay, the locus of ternary probabilities satisfying

PU(x)/PU(z) = pxz/pzx = 0.45/0.55 = 9
11 ; given pyz = 0.35, it must fall on Bx, the locus of

ternary probabilities satisfying PU(y)/PU(z) = pyz/pzy = 0.35/0.65 = 7
13 . The intersection
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of these two line segments, the point C, is the only value of the ternary choice probability

vector that is consistent with both pxz = 0.45 and pyz = 0.35 under the constant ratio rule.

The extension of line segment Cz intersects side xy at D, which gives the only value of the

binary probability pxy consistent with pxz = 0.45 and pyz = 0.35 under the constant ratio

rule.

Finally, we relax the constant ratio rule and suppose that simple scalability holds.

Here a range of possible values of PU(·) and pxy are possible. Rieskamp et al. (2006) show

that simple scalability implies strong stochastic transitivity (SST) of binary choice

probabilities, the condition that for all distinct a, b, c ∈ U , if pab ≥ 1
2 and pbc ≥ 1

2 , then

pac ≥ max(pab, pbc). For the given values of pxz and pyz, SST constrains pxy to be in the

interval [1/2, min(1 − pxz, 1 − pyz)], shown as a thick line segment in xy. The interior of the

gray shaded region gives the set of ternary choice probabilities consistent with simple

scalability, provided that pxy is selected to satisfy SST: the set satisfying

PU(z) > PU(x) > PU(y).

The Seminal Papers

The similarity effect is commonly attributed to Tversky (1972b), who describes a

“similarity hypothesis” relating to a choice environment in which choice objects x and y are

similar and object z is dissimilar to both x and y. The hypothesis is that the addition of y

to choice set {x, z} will reduce the share of x of the total probability of choosing x or z and

symmetrically, that the addition of x to {y, z} will reduce the share of y of the total

probability of choosing y or z.

Similarity Effect. Tversky (1972b) and Tversky (1972a) motivate the similarity

hypothesis by providing several theoretical counterexamples to simple scalability, and by

extension, to the constant ratio rule. Tversky (1972a) (page 292) claims that the

hypothesis is “incorporated into the [EBA] model”. The two papers make it clear that the

similarity hypothesis is a prediction about individual and not population choice. The
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evidence of this is three-fold: first, the theoretical counterexamples in these papers pertain

to individual choice; second, EBA models, introduced in Tversky (1972b) to accommodate

similarity effects, is described as a random process giving rise to individual choice

probabilities; third, the empirical results in Tversky (1972b) are based on observations of

the repeated choices of individuals.

Compromise Effect. Simonson (1989) and Tversky and Simonson (1993) each introduce

a version of the compromise effect; both effects pertain to a situation where an object y is

“between” two other objects, x and z. Simonson (1989) describes a strong version of the

effect, where adding x to the choice set {y, z} increases the probability of choosing y, and

adding z to the choice set {x, y} also increases the probability of choosing y. Tversky and

Simonson (1993) describe a weak version, where adding x to {y, z} increases the relative

probability of y over z and where adding z to the choice set {x, y} increases the relative

probability of y over x. Tversky and Simonson (1993) interpret probabilities exclusively as

population probabilities. However, the theoretical result they provide to argue that the

compromise effect gives indirect evidence against random preference applies equally well to

individual and population random preferences: they show that a condition on random

preferences (the ranking condition, defined below) rules out the compromise effect. The

plausibility of the ranking condition is subjective, and one may regard its plausibility

differently for individual and population random preferences, but the theoretical result

applies regardless.

Asymmetric Dominance Effect. Huber et al. (1982) introduce the asymmetric

dominance effect. They consider the addition of a third object, called a decoy, to a binary

choice set in which neither object “dominates” the other. The decoy is dominated by one

object in the pair but not the other. They claim that adding the decoy “can [emphasis

added] increase the probability of choosing the item that dominates it.” When it does, the

asymmetric dominance effect is said to occur. Their discussion of choice probabilities does

not distinguish between individual and population choice probabilities, and the empirical
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evidence provided in the paper comes from both within- and between-subject experimental

designs. There is a tighter connection between individual and population effects for the

asymmetric dominance effect than for the other two effects: aggregation properties of the

former are much more solid than those of the latter, as we will see in Section Aggregation

of context effects.

Huber et al. (1982) describe an “attraction” effect, similar to the asymmetric

dominance effect, but where the decoy is not necessarily dominated by its “target”. Many

authors have since treated the terms “attraction effect” and “asymmetric dominance effect”

as synonymous and requiring dominance, including the original authors of both papers, in

Huber et al. (2014). We adopt the latter term, to avoid any ambiguity.

Already, three interpretive issues arise in these descriptions: the distinction between

population and individual RCSs, the distinction between a weak and a strong version of an

effect, and the question of whether a claim about a “context effect” is a prediction that a

phenomenon will occur or a claim that a phenomenon can occur. Before we provide a more

complete list of the issues in Section An overview of the issues, we break down the

descriptions of context effects into three components.

Structure, preconditions and effect regions

In this section we introduce some terminology that will allow us to decompose the

description of a context effect into three components:

1. the structure of the universe U of choice objects that allows us to talk about

similarity, between-ness or dominance;

2. a precondition on choice objects that can be asserted or verified before observing

choice probabilities, such as two objects being similar to each other and each

dissimilar to a third object; and

3. the effect region, a subset of ∆(U) defining a restriction on choice probabilities
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associated with the precondition.

To illustrate, we will look more closely at the similarity hypothesis, as described by

Tversky (1972b), which will serve as an example. In defining the similarity hypothesis,

Tversky (1972b) describes a tripleton set T ≡ {x, y, z} of choice objects where x and y are

“similar” and z is “dissimilar” to each of x and y. We will take T ⊆ U , with T not

necessarily the same set as the universe U . He defines the “similarity hypothesis” as

follows, on page 292. Mathematical notation and equation numbers have been modified to

be consistent with the current paper.

. . . the similarity hypothesis . . . predicts that the addition of alternative y to

the set {x, z} will reduce PT (x) proportionally more than PT (z). That is, the

similar alternative, x, will lose relatively more than the dissimilar alternative, z,

by the addition of y. Likewise, y is expected to lose relatively more than z by

the introduction of x. . . . the similarity hypothesis implies

pxz >
PT (x)

PT (x) + PT (z) (3)

and

pyz >
PT (y)

PT (y) + PT (z) . (4)

In Section Definitions of context effects, we develop notation allowing us to express

the similarity hypothesis above as follows: let ∼ be a similarity relation on U and suppose

that T = {x, y, z} ⊆ U is such that x ∼ y, x ̸∼ z and y ̸∼ z; then P ∈ Sxy. Here the

structure of the universe U is the similarity relation ∼, the precondition is the triple

T = {x, y, z} ⊆ U satisfying x ∼ y, x ̸∼ z and y ̸∼ z; and the effect region Sxy is the subset

of ∆(U) where both—note the “and” between the two inequalities—inequalities (3) and (4)

hold.
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An overview of the issues

We will argue for more precision in the descriptions of context effects, along the

following dimensions.

1. Whether an effect pertains to individual or population probabilities. We have seen

that in the seminal papers, the similarity effect applies to individual choice

probabilities; the compromise effect, to population choice probabilities; and the

asymmetric dominance effect, to both. In the subsequent literature, the similarity

and compromise effects have been more flexibly defined. Compounding problems of

imprecision on this point is the fact that not all effects aggregate: we will show below

that it is possible for the RCS of each individual in a population to satisfy a context

effect and not the RCS for the population, and vice versa.

2. Whether an effect is weak, such as the compromise effect described in Tversky and

Simonson (1993) or strong, such as the compromose effect described in Simonson

(1989) and the asymetric dominance effect described in Huber et al. (1982). We will

see that the weak and strong effects have very different implications about whether

choice probabilities satisfy random utility. Also, the aggregation properties of the

weak and strong effects are very different, and the degree of empirical evidence

supporting the weak effect is much more solid than that supporting the strong effect.

3. In the case of the similarity and compromise effects, whether the claimed effect is

one- or two-sided. Tversky (1972b) makes the prediction that both (3) and (4) will

occur when the precondition is satisfied, and we will call this a two-sided effect.

However, much of the evidence presented in that paper provides more support for

one-sided effects, in which one of those equations holds but not the other. In the

subsequent literature, both kinds of effects are reported and the distinction between

the two is not always made explicit.
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4. Whether the claim one makes about a context effect is that it is predicted to occur in

a given context, as in the case of the seminal papers on the similarity and

compromise effects, or that the context effect is possible, as in the seminal paper on

the asymmetric dominance effect. The former is a much stronger claim, although the

latter is still important, as the effect may be inconsistent with properties of

commonly used discrete choice models.

5. Whether the precondition is asserted, as the similarity relation in the seminal

similarity effect paper, or can be derived from a more basic and objective criterion,

such as the between-ness relation in Tversky and Simonson (1993), one of the

seminal compromise effects paper.

6. Whether preconditions and effect regions are binary-ternary or ternary-ternary. The

context effects introduced in the seminal papers are binary-ternary, as they relate

choice probabilities on a ternary choice set and those on one or more binary subsets.

Since then, articles have tested ternary-ternary versions of these context effects,

which relate choice probabilities on two ternary choice sets having two elements in

common. While the ternary-ternary and binary-ternary versions of an effect are

related, they are distinct effects.

Without clarity in these dimensions, claims that theories “capture” a context effect,

claims about evidence for context effects, and claims about what this evidence implies

about conditions such as regularity, random utility, the constant ratio rule, and simple

scalability are hopelessly vague.

Outline

The paper is organized as follows. We introduce definitions for various versions of

the three context effects in Section Definitions of context effects. We survey some known

theoretical results and identify some open theoretical questions in Section Theoretical
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Results and conclude in Section Conclusions.

Definitions of context effects

In this section we elaborate on the terminology set forth in the introduction that

allow us to decompose the description of a context effect into three components: a

structure on the master set (such as a similarity relation ∼), preconditions (such as x ∼ y,

x ̸∼ z, y ̸∼ z) and an effect region (such as that defined by equations (3) and (4)). We first

describe similarity, compromise and asymmetric dominance effects where choice

probabilities on binary and ternary choice sets are compared. The seminal papers all

describe effects of this kind, and we will call them binary-ternary (or 2-3) effects. Then we

will describe ternary-ternary (or 3-3) variants of the three effects where choice probabilities

on two different ternary sets are compared.

The structure of the master set

Each of the three context effects is described in terms of a relation defined on the

master set of objects. As we have seen, for the similarity effect, there is a binary similarity

relation ∼. For the compromise effect, there is a ternary between-ness relation ·| · |·, where

x|y|z means that y is “between” x and z. For the asymmetric dominance effect, there is a

dominance relation, which we will denote ▷. We will assume that the similarity condition is

symmetric, that the between-ness relation is symmetric in the sense that x|y|z ⇔ z|y|x,

and that the dominance relation is transitive and irreflexive. This allows us to specify

relations more succinctly, as the assumptions “fill in” the missing information. We consider

the assumptions reasonable and are not aware of examples where they do not hold.

In some cases, the relation is asserted, with an appeal to the reader’s intuition.

Most people would accept the characterization, in Tversky (1972b), of two different

recordings of the same Beethoven symphony as being similar to each other and a recording

of a Debussy suite as being dissimilar to each of the Beethoven recordings. Luce and

Suppes (1965) describe an example they attribute to L. J. Savage in his correspondence
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with Luce, where dominance is asserted. The objects in the example are a pony, a bicycle,

and “another bicycle...which, although basically the same as [the first] is better in minor

ways, such as having a speedometer”. McCausland et al. (2021) describe an experiment

where participants are asked to choose the event they “think is most likely to happen in

the next twenty years”. They propose that the disjunction of two events (“Either Scotland

or Quebec become independent countries”) dominates any one of the two events (“Scotland

becomes an independent country”), which dominate the conjunction of the two events

(“Scotland and Quebec become independent countries.”) based on coherent probability

judgements.

Often, however, the similarity, between-ness and dominance relations are derived

relations, objectively defined in terms of a deeper structure on the master set. Very often,

this deeper structure consists of an attribute space. Choice object are identified with

vectors, points in a Euclidean space of finite dimension I. Each dimension is an attribute

(such as price) of a single indivisible choice object and the value of the corresponding

element of the vector is an attribute level (such as 10 dollars).

Two relations defined on attribute spaces are relevant to context effects, vector

dominance and between-ness, defined below. We use the term vector dominance, rather

than dominance, to emphasize that it is an objective property of objects, rather than a

property of preferences. However, it is worth noting that this kind of dominance is usually

considered relevant only when some kind of monotonicity of preferences is anticipated: in

most cases, if x vector dominates y, x is clearly the better choice and we expect people to

choose x over y when {x, y} is presented. We can always transform attributes like price,

where we might expect preferences to be monotonically decreasing, so that preferences are

increasing in the transformed attribute levels.

Definition 7 Let x = (x1, . . . , xI) and y = (y1, . . . , xI) be two objects in an attribute space.

We say that x = (x1, . . . , xI) vector dominates (y1, . . . , yI), which we denote x ≩ y, if

xi ≥ yi for all i ∈ {1, . . . , I} and x ̸= y.
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Definition 8 (Tversky and Simonson, 1993) Let x, y and z be three objects in an

attribute space. We say that y is between x and z, denoted x|y|z, if neither x nor z vector

dominates the other, and for all i ∈ {1, . . . , I}, either xi ≤ yi ≤ zi or zi ≤ yi ≤ xi.

Note the distinction between the dominance relation ▷, which does not rely on any

attribute structure and in some cases may be primitive, and the vector dominance relation

≩, which is an objectively defined relation on attribute spaces. In many cases, the ▷

relation is derived from the ≩ relation. We are not aware of any cases in which the

compromise effect is based on a between-ness relation other than that just defined, so there

is no need to make a similar distinction here.

We discuss below the relationship among the three context effects, and so we

emphasize here that a master set can be endowed with more than one of the three

relations. For example, we might specify both a similarity relation ∼ and a between-ness

relation ·| · |· on the same master set. If we have a tripleton set {x, y, z} ⊆ U where x ∼ y,

x ̸∼ z, y ̸∼ z and x|y|z, we simultaneously satisfy the preconditions for the similarity and

compromise effects.

Preconditions

The precondition for the similarity effect is the existence of a set T = {x, y, z} ⊆ U

satisfying x ∼ y, x ̸∼ z and y ̸∼ z; that for the compromise effect is the existence of a set

T = {x, y, z} ⊆ U such that x|y|z; that for the asymmetric dominance effect is the

existence of a set T = {x, y, z} ⊆ U satisfying x ▷ y, z ⋫ y and x ⋫ z.

Preconditions of different context effects can be satisfied simultaneously, and in

some reasonable cases, associated effects may be inconsistent with each other. For example,

an object y may be between objects x and z (i.e. x|y|z) but closer to x than y. Suppose we

posit x ∼ y, x ̸∼ z, y ̸∼ z. One of the inequalities that the weak similarity effect associates

with this precondition is PT (z)/PT (y) > pzy/pyz. However, one of the inequalities the weak

compromise effect associates with the precondition x|y|z is PT (z)/PT (y) < pzy/pyz. Clearly
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the two inequalities cannot both be satisfied. For another example, consider a triple

T = {x, y, z} satisfying x ▷ y, z ⋫ y, x ⋫ z. The asymmetric dominance effect associates

this precondition with the inequality PT (x) > pxz. If x is close to y, we might reasonably

posit x ∼ y, x ̸∼ z, y ̸∼ z. However, the weak similarity effect associates this additional

precondition with the inequality PT (x)/PT (z) < pxz/pzx. Again, we have two inequalities

that cannot both hold.

These examples illustrate the importance of clarifying whether one is predicting

that an effect will occur or claiming that it is possible. They also illustrate the importance

of distinguishing between one-sided effects and the stricter two-sided effects, since the

latter may be in conflict with another type of context effect even when the former is not.

Finally, they encourage precise descriptions of the structure of the master set, to avoid

conflicting predictions.

Effect regions

Part of the description of a context effect is a condition on choice probabilities

associated with a precondition. We represent these conditions as effect regions, subsets of

∆(U), the space of all RCSs on the master set U . We can interpret effect regions and their

complements as hypotheses amenable to statistical testing; detecting the presence of a

context effect, contingent on the precondition being satisfied, can be framed as a test of

such a hypothesis.

We introduce some notation that helps reveal the resemblance among the various

context effects. For a given master set U and distinct objects a, b, b′ ∈ U , we define the

weak generic effect region Eabb′ as

Eabb′ ≡
{

P ∈ ∆(U) : P{a,b,b′}(b)
P{a,b,b′}(a) + P{a,b,b′}(b)

> pba

}
,

where adding the object b′ to the set {a, b} increases the probability share of b, out of the

two elements a and b. We define the strong generic effect region Eabb′ as

Eabb′ ≡ {P ∈ ∆(U) : P{a,b,b′}(b) > pba},
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where adding the object b′ to the set {a, b} increases the probability of b. Note that

Eabb′ ⊂ Eabb′ : the strong generic effect is indeed more restrictive than the weak generic

effect. The weak generic effect region can also be written as

Eabb′ =
{

P ∈ ∆(U) : pab >
P{a,b,b′}(a)

P{a,b,b′}(a) + P{a,b,b′}(b)

}
,

where the defining inequality resembles equations (3) and (4) more transparently. However,

this form obscures the relationship between the weak and strong generic effect regions that

is more obvious in the previous definition. We will define Ec
abb′ and Ec

abb′ as the

complements of Eabb′ and Eabb′ , respectively, in ∆(U). We now express the effect regions for

various versions of the three types of context effects, in terms of the generic regions.

Similarity effects

Let T ≡ {x, y, z} ⊆ U . The similarity effects we describe here are associated with a

similarity relation ∼ on the master set U , together with the precondition that x ∼ y, x ̸∼ z

and y ̸∼ z.

We call the similarity effects described by Tversky (1972b), restated in equations (3)

and (4), weak similarity effects. In terms of weak generic effect regions, the region where

(3) holds is Exzy and the region where (4) holds is Eyzx. Later, we will use the following

shorthand notation for one- and two-sided weak similarity effects. We define

Sxy ≡ Exzy ∩ Eyzx, the region in which (3) and (4) both hold, and call the associated effect

a two-sided weak similarity effect. Similarly, we define Sx ≡ Exzy ∩ Ec
yzx and

Sy ≡ Ec
xzy ∩ Eyzx, and call the associated effects one-sided weak similarity effects. Finally,

we let ��S ≡ Ec
xzy ∩ Ec

yzx, the region where neither (3) nor (4) holds.

Figure 3 shows cross sections of the sets Sx, Sy and Sxy. For the same fixed values

pxz = 0.45 and pyz = 0.35 as in Figure 2, Figure 3 shows the set of values of the ternary

probability vector PT (·) in each of these regions, in Barycentric coordinates. Also indicated

on the diagram, to help illustrate results in Section Theoretical Results, are the regularity

and simple scalability regions from Figure 2. The boundary of those regions are indicated
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here by dashed and dotted lines, respectively. Note that for the given binary choice

x

y

zx

y

zpxz=0.45

pyz=0.35

SxySy

Sx

Figure 3

One- and two-sided weak similarity effects: given pxz = 0.45 and pyz = 0.35, Sxy is the

region where (3) and (4) holds, Sx is the region where (3) holds and (4) does not and Sy is

the region where (4) holds and (3) does not. ��S, the region where there is no weak similarity

effect is unshaded.

probabilities, all of the regions Sx, Sy, Sxy and ��S intersect with the region where simple

scalability holds, illustrating that the type of weak similarity effect is logically independent

of simple scalability. Similarly, the four regions all intersect with the region where

regularity holds, showing that the type of weak similarity effect is logically independent of

regularity.

We now define notation for what we will call strong similarity effects.

Corresponding to the weak similarity regions Exzy and Eyzx, described by equations (3)

and (4), we have the strong similarity regions Exzy and Eyzx. We define, analogously with

the weak similarity effects, the two-sided strong similarity effect Sxy, the two one-sided
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strong similarity effects Sx and Sy, and the absence of a strong similarity effect ��S. Clearly

Sxyz ⊆ Sxyz, justifying the qualifiers weak and strong.

Compromise effects

Again, let T ≡ {x, y, z} ⊆ U , but now we describe compromise effects associated

with the precondition that x, y and z satisfy the between-ness relation x|y|z.

The compromise effects described by Tversky and Simonson (1993) are weak effects.

The effect region associated with adding z to {x, y}, making y a “compromise” option, is

the weak effect region Exyz; the region associated with adding x to {y, z}, also making y a

compromise option, is Ezyx.

In a similar manner to the weak similarity effects, we use the shorthand notation

Cxz to denote Exyz ∩ Ezyx and call the associated effect a two-sided weak compromise

effect. We use the notation Cx ≡ Exyz ∩ Ec
zyx and Cz ≡ Ec

xyz ∩ Ezyx for the two one-sided

weak compromise effect regions and ��C ≡ Ec
xyz ∩ Ezyx for the region where there is no weak

compromise effect.

The compromise effects described by Simonson (1989) are strong effects, where the

probability of choosing the between object y goes up when it becomes a compromise

object. We use the notation Cx ≡ Exyz ∩ Ec
zyx and Cz ≡ Ec

xyz ∩ Ezyx for the two one-sided

strong compromise effect regions and ��C ≡ Ec
xyz ∩ Ezyx for the region where there is no

strong compromise effect.

The notation for the weak and strong generic effect regions helps reveal the common

mathematical structure of the weak similarity and compromise effects and that of the

strong similarity and compromise effects. In the similarity effect, there is a symmetry

between the two similar choice objects, and the dissimilar object is in the same relation to

both. In the compromise effect, there is a symmetry between the two extreme objects, and

the between object is in a symmetric relation to the two others, in the sense that x|y|z if

and only if z|y|x. Furthermore, in both weak effects, the distinct object (dissimilar or
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between) is the one that is relatively favoured in ternary choice, compared to binary choice.

In both strong effects, the distinct object is the one whose probability increases in ternary

choice. Note that the definitions of Cxz, Cx, Cz, ��C, Cx, Cz and ��C can be obtained by

exchanging the elements y and z in the definitions of Sxy, Sx, Sy, ��S, Sx, Sy and ��S,

respectively. We will exploit this common structure in the proofs of Section Theoretical

Results.

Asymmetric dominance effects

For the same T = {x, y, z} ⊆ U , we now consider the effect region associated with

the precondition that x ▷ y, z ⋫ y and x ⋫ z, where ▷ is a dominance relation on U . As far

as we know, the asymmetric dominance effect is consistently described as a strong effect.

The decoy object y in the asymmetric dominance effect, unlike the decoy in the similarity

and compromise effects, is expected to have a very low choice probability. As a

consequence, there is little difference in practice between the strong asymmetric dominance

effect and a weak version of it. The effect region for the asymmetric dominance effect is

Ezxy, where the probability of choosing x increases when the decoy y, dominated by x but

not by z, is added to the choice set {x, z}. For the sake of completeness of the results

below, we define a weak asymmetric dominance effect as the effect with the same

precondition and effect region Ezxy.

The asymmetric dominance effect differs in another way: there is no symmetry in

the precondition, as there is between the two similar objects of the similarity effect and the

two extreme objects of the compromise effect. Thus, there is only ever a one-sided effect.

However, when we consider the ternary-ternary effects, we will see that in this case, the

asymmetric dominance effect is more similar to the other two effects.

Ternary-ternary effects

Trueblood et al. (2014) give clear definitions of ternary-ternary versions of the

similarity, compromise, and asymmetric dominance effects, although the idea goes back to



ILLUSTRATED GUIDE TO CONTEXT EFFECTS 30

at least Wedell (1991). All three ternary-ternary effects have the following features in

common: there are two main choice objects, a and b, which appear in both relevant choice

sets, and two other objects, a′ and b′. Two ternary choice sets are presented to decision

makers, {a, b, a′} and {a, b, b′}. Relative to the inclusion of b′, the inclusion of a′ in the

choice set favours the choice of a relative to b. For a given master set U and distinct

elements a, b, a′ and b′, the generic ternary-ternary effect region is

Ea′abb′ ≡
{
P ∈ ∆(U) : P{a,b,a′}(a) > P{a,b,b′}(a) and P{a,b,a′}(b) < P{a,b,b′}(b)

}
,

so that when we compare choice probabilities on the ternary set where the third element is

a′ with those where the third element is b′, the probability of choosing a is higher and the

probability of choosing b is lower.

In the ternary-ternary similarity effect, there is a similarity relation ∼ on U and the

precondition is a′ ∼ b, b′ ∼ a and a ̸∼ b. In the ternary-ternary compromise effect, there is

a between-ness relation ·| · |· and the precondition is a′|a|b and a|b|b′. In the

ternary-ternary asymmetric dominance effect, there is a dominance relation ▷ and the

precondition is a ▷ a′, b ▷ b′, a ⋫ b′, b ⋫ a′.

Although the same name is used to describe both ternary-ternary and

binary-ternary effects, sometimes in the same paper, they are distinct effects. They are

related, however, and we explore this relation below.

Theoretical Results

In this section we provide some results relevant to the issues raised in Section An

overview of the issues. Some are previously known results and others are new. We begin in

Section Compatibility (or not) of context effects with regularity, random utility, the

constant ratio rule and simple scalability with results on the compatibility, or not, of the

three context effects with regularity, random utility, the constant ratio rule and simple

scalability. We then discuss results that relate different kinds of context effect. Section

Aggregation of context effects relates individual and population versions of the same
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effects; some effects aggregate and others do not. Section Theorems relating binary-ternary

and ternary-ternary context effects relates binary-ternary and ternary-ternary versions of

the same effect. Section Theorems related to the compromise effect summarizes known

results about the compromise effect.

Compatibility (or not) of context effects with regularity, random utility, the

constant ratio rule and simple scalability

The compatibility results of this section are summarized in Table 2 and can be

expressed briefly as follows. All context effects, weak or strong, one- or two-sided,

binary-ternary or ternary-ternary, are incompatible with the constant ratio rule (×1). All

ternary-ternary effects are incompatible with simple scalability (×2). All strong

binary-ternary context effects, whether one- or two-sided, are incompatible with regularity

and, by extension, with random utility (×3). However, all weak binary-ternary context

effects, whether one- or two-sided, and all ternary-ternary context effects, are compatible

with regularity, in the sense that for each type of effect, there are examples where

regularity holds (✓1) Also, all binary-ternary context effects, whether weak or strong,

whether one- or two-sided, are compatible with simple scalability, in the sense that for each

type of effect, there are examples where simple scalability holds (✓2).

Effect type Constant ratio rule Simple scalability Regularity

Weak 2-3 ×1 ✓2 ✓1

Strong 2-3 ×1 ✓2 ×3

3-3 ×1 ×2 ✓1

Table 2

Summary of compatibility results

The incompatibility results are mostly well known and fairly obvious. Suppose we

have a universe that includes objects a, b, a′ and b′: {a, a′, b, b′} ⊆ U . The condition in the
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definition of the binary-ternary weak generic context effect Eabb′ is clearly inconsistent with

P{a,b,b′}(a)/P{a,b,b′}(b) = p(a, b)/p(b, a), a necessary condition for the constant ratio rule. By

extension, all binary-ternary weak and strong context effects, one-sided and two-sided, are

inconsistent with the constant ratio rule. If the two conditions in the definition of the

ternary-ternary generic effect region Ea′abb′ hold, then

P{a,b,a′}(a)/P{a,b,a′}(b) = p(a, b)/p(b, a) and P{a,b,b′}(a)/P{a,b,b′}(b) = p(a, b)/p(b, a) cannot

both hold. Therefore all ternary-ternary effects are incompatible with the constant ratio

rule. The stronger condition that ternary-ternary effects are incompatible with simple

scalability is easily shown directly without appeal to its equivalence to the order

independence condition. Suppose that simple scalability holds and let F2(·, ·), F3(·, ·, ·),

F4(·, ·, ·, ·) and u(·) be functions satisfying the conditions of Definition 5. The first defining

condition of the generic ternary-ternary effect gives

F3(u(a), u(b), u(a′)) = P{a,b,a′}(a) > P{a,b,b′}(a) = F3(u(a), u(b), u(b′)),

which, together with the monotonicity property of F3 implies u(a′) < u(b′). The second

defining condition gives

F3(u(b), u(a), u(a′)) = P{a,b,a′}(b) < P{a,b,b′}(b) = F3(u(b), u(a), u(b′))

which, with monotonicity, implies u(a′) > u(b′). Clearly the two conditions cannot both

hold if simple scalability does. Finally, the condition in the definition of the strong generic

context effect Eabb′ is clearly inconsistent with P{a,b,b′}(b) ≤ pba, a necessary condition for

regularity. By extension, all strong context effects, one-sided and two-sided, are

inconsistent with regularity. Since regularity is itself necessary for random utility, they are

inconsistent with random utility.

We now turn to compatibility results for binary-ternary effects. Since these results

consist of examples of complete RCSs satisfying various combinations of conditions, we

provide examples with the simplest structure possible. Thus, we restrict our attention to

the universe U = {x, y, z}. We begin with weak similarity effects and show that whether we
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have a two-sided effect, a one-sided effect or no effect is logically independent of regularity

and logically independent of simple scalability. We do this by providing examples of RCSs

satisfying both simple scalability and regularity in each of the regions Sxy, Sx, Sy and ��S;

and other examples of RCSs satisfying neither regularity nor simple scalability in each of

those same regions. Figure 3 illustrates these facts graphically. In all our examples,

pxz = 0.45, pyz = 0.35 and pxy = 117/194 ≈ 0.603. The values of pxz and pyz are the same

as those in Figures 2 and 3. The value pxy = 117/194 corresponds to point D in Figure 2,

and is the only value of pxy that makes the three binary choice probabilities consistent with

the constant ratio rule. Given these three binary choice probabilities, the set of ternary

choice probability vectors completing a RCS on U = {x, y, z} satisfying simple scalability is

the region where PU(z) > PU(x) > PU(y), indicated in grey in Figure 2 and in dotted lines

in Figure 3. We turn now to the regularity condition—and indirectly, random utility, since

they are equivalent in universes of size three. Given pxz = 0.45 and pyz = 0.35, the value

pxy = 117/194 imposes no further regularity restrictions on ternary choice probabilities:

since pxy > pxz and pyx > pyz, the constraint PU(x) ≤ pxz on PU(x) and the constraint

PU(y) ≤ pyz make the constraints PU(x) ≤ pxy and PU(y) ≤ pyx redundant. Thus the set of

ternary choice probability vectors consistent with the three binary choice probabilities we

have just specified is the same set of vectors consistent with pxz = 0.45 and pyz = 0.35

alone, namely the inverted triangle in Figure 2, also indicated in Figure 3 with dashed lines.

Recall that the regions in Figure 3 labelled Sxy, Sx, Sy and ��S are cross sections of

the regions Sxy, Sx, Sy and ��S defined in Section Definitions of context effects. Now it just a

matter of pointing out that each of these cross sections intersects with the regularity

region, the simple scalability region and each of their complements. Table 3 provides

particular numerical examples, which can be verified directly. The first four rows show

examples of ternary probability vectors, which, together with the three fixed binary

probabilities, form a RCS satisfying both simple scalability and regularity, in the regions

Sxy, Sx, Sy and ��S, respectively. The next four rows show examples giving RCSs satisfying
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neither simple scalability nor regularity, in the same four effect regions.

Effect PT (x) PT (y) PT (z) PT (x)
PT (x)+PT (z)

PT (y)
PT (y)+PT (z)

Sxy 0.3 0.2 0.5 3/8 = 0.375 2/7 ≈ 0.286

Sx 0.3 0.27 0.43 30/73 ≈ 0.411 27/70 ≈ 0.386

Sy 0.4 0.17 0.43 40/83 ≈ 0.482 17/60 ≈ 0.283

��S 0.33 0.3 0.37 33/70 ≈ 0.471 30/67 ≈ 0.448

Sxy 0.0 0.2 0.8 0.0 0.2

Sx 0.0 0.8 0.2 0.0 0.8

Sy 0.8 0.0 0.2 0.8 0.0

��S 0.5 0.5 0.0 1.0 1.0
Table 3

Compatibility of two-sided (Sxy), one-sided (Sx and Sy) and no (��S) weak similarity effects

with simple scalability and regularity (first four rows) and compatibility with violations of

simple scalability and regularity (last four rows). In all eight cases, pxy = 117/194 ≈ 0.603,

pxz = 0.45 and pyz = 0.35.

Given the common mathematical structure of the various similarity effects and their

compromise effect counterparts, outlined in Section Compromise effects, we obtain similar

compatibility results for weak compromise effects by exchanging the objects y and z. Table

4 is the resulting counterpart to Table 3. The first four rows give examples of ternary

probability vectors, which, together with the binary choice probabilities pxy = 0.45,

pxz = 117/194 ≈ 0.603 and pyz = 0.65, form a RCS satisfying both simple scalability and

regularity, in the regions Cxz, Cx, Cz and ��C, respectively. The next four rows give RCSs

satisfying neither simple scalability nor regularity, in the same effect regions.

Table 5 shows examples of RCSs explicitly induced by random preferences, in the

regions Sxy, Sx, ��S, Cxz, Cx and ��C. The first column identifies which subset of the partition

defined in Section Similarity effects that the example falls into. Columns πxyz through πzyx
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Effect PT (x) PT (y) PT (z) PT (x)
PT (x)+PT (y)

PT (z)
PT (z)+PT (y)

Cxz 0.3 0.5 0.2 3/8 = 0.375 2/7 ≈ 0.286

Cx 0.3 0.43 0.27 30/73 ≈ 0.411 27/70 ≈ 0.386

Cz 0.4 0.43 0.17 40/83 ≈ 0.482 17/60 ≈ 0.283

��C 0.33 0.37 0.3 33/70 ≈ 0.471 30/67 ≈ 0.448

Cxz 0.0 0.8 0.2 0.0 0.2

Cx 0.0 0.2 0.8 0.0 0.8

Cz 0.8 0.2 0.0 0.8 0.0

��C 0.5 0.0 0.5 1.0 1.0
Table 4

Compatibility of two-sided (Cxz), one-sided (Cx and Cz) and no (��C) weak compromise

effects with simple scalability and regularity (first four rows) and compatibility with

violations of simple scalability and regularity (last four rows). In all eight cases, pxy = 0.45,

pxz = 117/194 ≈ 0.603 and pzy = 0.35.

describe a random preference and columns pxy through PT (z) describe the choice

probabilities induced by that random preference. The effects Sy and Cz are omitted from

the table because of symmetry between x and y in the weak similarity effect and the

symmetry between x and z in the weak compromise effect.

We now show that strong binary-ternary effects are compatible with simple

scalability. We begin with two examples showing the compatibility of one- and two-sided

strong similarity effects. In both examples, the binary choice probabilities are

pxy = 117/194 ≈ 0.603, pxz = 0.45 and pyz = 0.35, as they were in previous examples. We

have seen that SST holds for these probabilities. In the first example, we complete the

RCS on U = {x, y, z} with the ternary choice probability vector

(PU(x), PU(y), PU((z)) = (0.3, 0.1, 0.6). Since 0.6 = PU(z) > pzx = 0.55 but

0.6 = PU(z) ̸> pzy = 0.65, we have a one-sided, but not two-sided strong effect. Since



ILLUSTRATED GUIDE TO CONTEXT EFFECTS 36

Effect πxyz πxzy πyxz πyzx πzxy πzyx pxy pyz pxz PT (x) PT (y) PT (z)

Sxy 1/4 0 1/4 0 1/4 1/4 1/2 1/2 1/2 1/4 1/4 1/2

Sx 0 1/8 3/8 1/8 3/8 0 1/2 1/2 1/2 1/8 1/2 3/8

��S 0 1/2 0 1/2 0 0 1/2 1/2 1/2 1/2 1/2 0

Cxz 0 1/4 1/4 1/4 1/4 0 1/2 1/2 1/2 1/4 1/2 1/4

Cx 1/8 0 3/8 0 3/8 1/8 1/2 1/2 1/2 1/8 3/8 1/2

��C 1/2 0 0 0 0 1/2 1/2 1/2 1/2 1/2 0 1/2
Table 5

Compatibility of weak similarity and weak compromise effects with random preferences.

Each line gives the specification of a single random preference, in columns πxyz through

πzyx; and the induced RCS, in columns pxy through PT (z).

PU(z) > PU(y) > PU(x), simple scalability holds. In the second example,

(PU(x), PU(y), PU((z)) = (0.2, 0.1, 0.7), and since PU(z) = 0.7 is greater than both pzx and

pzy, we have a two-sided strong effect. Because of common mathematical structure, the

strong one- and two-sided binary-ternary compromise effects, and the strong

binary-ternary asymmetric dominance effect—which is only ever one-sided—are also

compatible with simple scalability.

Our final example in this section shows that the ternary-ternary effects are

compatible with random preference, and by extension, random utility and regularity. The

random preference that assigns probability ϵ ∈ (0, 1
2) to the rankings b′ ≻ a ≻ b ≻ a′ and

a′ ≻ b ≻ a ≻ b′ and probability 1
2 − ϵ to the rankings a ≻ b ≻ a′ ≻ b′ and b ≻ a ≻ a′ ≻ b′

induces probabilities satisfying the two inequalities in the definition of the generic

ternary-ternary effect: 1
2 = P{a,b,a′}(a) > P{a,b,b′}(a) = 1

2 − ϵ and
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1
2 = P{a,b,b′}(b) > P{a,b,a′}(b) = 1

2 − ϵ. There are simpler examples, such as the random

preference assigning probability 1
2 to the first two rankings above, but the example

provided is a more realistic outcome of an asymmetric dominance experiment: the

probabilities of a ≻ a′ and b ≻ b′ are both 1 − ϵ and can be set arbitrarily close to one.

Because only some versions of the context effects conflict with simple scalability, it

is important to be precise about effect regions. We take Trueblood, Brown, and Heathcote

(2013) (TBH) as a cautionary example. TBH assert (page 179)

Beyond their practical implications for areas such as consumer choice, the

three effects are important for theories of preference because they violate the

property of simple scalability (Krantz, 1964; Tversky, 1972).

Krantz (1964) defines simple scalability, and the paper predates the similarity effect.

Tversky (1972b) provides many theoretical arguments and much empirical evidence against

simple scalability, introduces the EBA model specifically to “resolve this problem” and

claims that the (weak two-sided binary-ternary) similarity effect is “incorporated into the

[EBA] model”. Then in the empirical section, he tests the stronger hypothesis of the

constant-ratio rule, not simple scalability, against the alternative hypothesis of the

similarity effect. He never claims, however, that the effect violates simple scalability, and

we have seen that it does not. TBH provide three different descriptions of the “similarity

effect”, none of which corresponds to the two-sided weak effect introduced by Tversky

(1972b) or to the one-sided version of it. In the context of binary-ternary choice, they give

the following descriptions: (page 179 and page 181, respectively)

The similarity effect arises from the introduction of an option that is similar

to, and competitive with, one of the original alternatives, and causes a

reduction in the probability of choosing the similar alternative.

and
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The similarity effect occurs when a competitive option ... that is similar to

one of the existing alternatives is added to the choice set and the probability of

selecting the dissimilar option increases.

The first of these descriptions is not much more than what regularity predicts. The second

is a strong similarity effect, which does not necessarily violate simple scalability either.

TBH also use the term “similarity effect” to describe (page 181) the ternary-ternary

similarity effect, which does in fact violate simple scalability. Fortunately, this is the

definition to which the empirical results of their paper pertain.

Aggregation of context effects

Suppose we have a population of decision makers, each of whose choices is governed

by an RCS. For any given context effect, an individual RCS is either inside or outside the

associated effect region, and the same is true for the population RCS. We discuss here the

logical relationships between the occurrence or not of a given effect for individual RCSs

and its occurrence or not for the population RCS.

It turns out that the aggregation properties of the weak similarity and weak

compromise effects are very different from those of the strong versions of those effects. We

can say much more about the aggregation of strong effects. This is because the effect

regions for the strong effects are defined by one or more linear inequalities in choice

probabilities and are therefore convex in ∆(U). Because a population RCS is a convex

combination of individual RCSs, any strong effect that is satisfied by each individual RCS

in the population must be satisfied by the population RCS. For the weak effects, the

occurrence or not of an effect in the various individual RCSs implies very little about its

occurrence or not in the population RCS; although we have seen convex cross-sections of

the effect regions of weak context effects, the effect regions are not in fact convex and

neither are their complements.

We support our claim about the (lack of) aggregation of weak effects by providing a
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long list of counterexamples. We start with the weak similarity effect and suppose we have

(x, y, z) with x ∼ y, x ̸∼ z and y ̸∼ z. Each counterexample consists of the specification of

two individual RCSs on {x, y, z}, P (1) and P (2); in each case, we compute an aggregate

RCS P that is the equally weighted mixture of P (1) and P (2). We can think of a random

draw from a population of the two individuals or, alternatively, a random draw from a

population with two equally likely types.

Each of the three RCSs (P (1), P (2) and P ) is in exactly one of Sxy, Sx, Sy or ��S; in

each counterexample, we indicate, for each RCS, which is the case. There are 43 = 64

combinations in total, but some are equivalent to others, because of symmetry between x

and y, and are excluded. There is one counterexample for each row of Tables 6, 7 and 8,

each one demonstrating the possibility of a given combination. It turns out that all

combinations are possible.

We start with Table 6, which illustrates some of the more intuitively obvious

possibilities. The binary probabilities do not vary from case to case within this table. They

are p(1)
xz = p(2)

xz = pxz = 0.5 and p(1)
yz = p(2)

yz = pyz = 0.5. The binary probabilities p(1)
xy , p(2)

xy

and pxy are not specified as they have no bearing on the occurence or not of the various

effects. Each row gives gives the ternary probabilities for the individual RCSs P (1) and P (2)

and for the aggregate RCS P . Each of the three RCSs is identified as satisfying one of Sxy,

Sx, Sy or ��S, for convenience. All can be verified fairly easily by hand using the information

provided in the table.

Take as an example the first row of Table 6. The two individual RCSs P (1) and P (2)

are the same, and thus the aggregate RCS P is the same as P (1) and P (2). The first column

indicates that P (1) satisfies Sxy, the two-sided weak similarity effect. The next three

columns indicate that the ternary probabilities for P (1) in this case are

P (1)(x) = P (1)(y) = 0.2 and P (1)(z) = 0.6. The next four columns give the same

information for P (2); the last four columns, for the aggregate RCS P . The relevant binary

probabilities are given above the table and do not vary from case to case within the table.
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Of course, it is obvious that two RCSs exhibiting the two-sided weak similarity

effect can aggregate to an RCS satisfying the two-sided weak similarity effect. Some other

cases are just as obvious but we include them all for completeness. We will see there are

also cases that are not obvious, and even counter-intuitive.

Table 7 is similar to Table 6, except for the specification of the binary choice

probabilities. As before, binary choice probabilities do not vary within the table, but now

they are p(1)
xz = 0.2, p(2)

xz = 0.8 and pxz = 0.5; and p(1)
yz = 0.8, p(2)

yz = 0.2 and pyz = 0.5. Again,

p(1)
xy , p(2)

xy and pxy need not be specified. The cases in this table are more counterintuitive.

For example, in the second case of that table, two RCSs exhibiting weak two-sided

similarity effects aggregate to an RCS satisfying no similarity effects. This case is

illustrated in Figure 4, where the left, middle and right panels show the RCSs P (1), P (2)

and P , respectively, in the same way as Figure 1 shows a particular RCS. The shaded

regions of the three panels indicate cross sections of Sxy, Sx, Sy and ��S in the same way that

Figure 3 does.

Table 8 gives another set of examples. As in the two previous tables, binary choice

probabilities do not vary within the table; here, they are p(1)
xz = 0.8, p(2)

xz = 0.2 and

pxz = 0.5; and p(1)
yz = 0.8, p(2)

yz = 0.2 and pyz = 0.5. Again, p(1)
xy , p(2)

xy and pxy need not be

specified. Here, too, there are counterintuitive cases. For example, in the fourth row of

that table, two RCSs, neither exhibiting any kind of weak similarity effect aggregate to an

RCS that exhibits a two-sided weak similarity effect. This case is illustrated in Figure 5 in

the same manner as Figure 4 illustrated another case; again, the left, middle and right

panels show the RCSs P (1), P (2) and P , respectively.

Table 9 gives a single example, the remaining case where P (1) and P (2) both satisfy

Sx and P satisfies Sy. The case is illustrated in Figure 6, where the left middle and right

panels show the RCSs P (1), P (2) and P , respectively.

Taking the four tables together, we have several remarks. First, several cases are

omitted because of symmetry; for example, all cases where P (1) satisfies Sy are omitted
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p(1)
xz = 0.5, p(1)

yz = 0.5 p(2)
xz = 0.5, p(2)

yz = 0.5 pxz = 0.5, pyz = 0.5

P
(1)
T (x) P

(1)
T (y) P

(1)
T (z) P

(2)
T (x) P

(2)
T (y) P

(2)
T (z) PT (x) PT (y) PT (z)

Sxy 0.2 0.2 0.6 Sxy 0.2 0.2 0.6 Sxy 0.2 0.2 0.6

Sxy 0.2 0.2 0.6 Sx 0.1 0.5 0.4 Sxy 0.15 0.35 0.50

Sxy 0.2 0.2 0.6 Sx 0.8 0.2 Sx 0.1 0.5 0.4

Sxy 0.2 0.2 0.6 ��S 0.4 0.4 0.2 Sxy 0.3 0.3 0.4

Sxy 0.2 0.2 0.6 ��S 0.3 0.7 Sx 0.25 0.45 0.30

Sxy 0.3 0.3 0.4 ��S 0.5 0.5 ��S 0.4 0.4 0.2

Sx 0.1 0.5 0.4 Sx 0.1 0.5 0.4 Sx 0.1 0.5 0.4

Sx 0.1 0.5 0.4 Sy 0.5 0.1 0.4 Sxy 0.3 0.3 0.4

Sx 0.8 0.2 Sy 0.5 0.1 0.4 Sx 0.25 0.45 0.30

Sx 0.8 0.2 Sy 0.8 0.2 ��S 0.4 0.4 0.2

Sx 0.1 0.5 0.4 ��S 0.4 0.4 0.2 Sx 0.25 0.45 0.30

Sx 0.1 0.5 0.4 ��S 0.5 0.5 ��S 0.3 0.5 0.2

��S 0.5 0.5 ��S 0.5 0.5 ��S 0.5 0.5
Table 6

Patterns of occurrence of weak similarity effects in two individual RCSs and their

population RCS.

because each is equivalent to another case where P (1) satisfies Sx. However, taking into

account this symmetry, the list of cases is exhaustive: any pattern is possible. Second,

within each table we have listed cases in the order Sxy, Sx, Sy, ��S, lexicographically with

respect to P (1), P (2) and P . This is to help the reader find particular cases in the three

tables.

Again, we can exploit the common mathematical structure of the various similarity

effects and their compromise effect counterparts to obtain a full set of examples showing

that any aggregation pattern is also possible for weak compromise effects. We do not
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p(1)
xz = 0.2, p(1)

yz = 0.8 p(2)
xz = 0.8, p(2)

yz = 0.2 pxz = 0.5, pyz = 0.5

P
(1)
T (x) P

(1)
T (y) P

(1)
T (z) P

(2)
T (x) P

(2)
T (y) P

(2)
T (z) PT (x) PT (y) PT (z)

Sxy 0.66 0.34 Sxy 0.58 0.08 0.34 Sx 0.29 0.37 0.34

Sxy 0.70 0.30 Sxy 0.70 0.30 ��S 0.35 0.35 0.30

Sxy 0.10 0.40 0.50 Sx 0.70 0.10 0.20 Sy 0.40 0.25 0.35

Sxy 0.05 0.70 0.25 Sx 0.55 0.20 0.25 ��S 0.30 0.45 0.25

Sx 0.85 0.15 Sx 0.60 0.15 0.25 ��S 0.30 0.50 0.20
Table 7

Patterns of occurrence of weak similarity effects in two individual RCSs and their

population RCS.

tabulate these explicitly; the reader can construct individual examples as desired by

exchanging objects y and z. For example, to construct an example where two RCSs in Cx

aggregate to an RCS in Cxz, take the first example in Table 8. Exchanging objects y and z

gives one RCS type with pxy = 0.8, pyz = 0.2, PT (x) = 0.42, PT (y) = 0.11 and

PT (z) = 0.47; a second RCS type with pxy = 0.2, pyz = 0.8, PT (x) = 0.12, PT (y) = 0.69 and

PT (z) = 0.19; and an aggregate RCD with pxy = 0.5, pyz = 0.5, PT (x) = 0.27, PT (y) = 0.40

and PT (z) = 0.33.

Theorems relating binary-ternary and ternary-ternary context effects

Here we explore the theoretical relationship between the ternary-ternary (3-3)

context effects described in Section Ternary-ternary effects, and related binary-ternary

context effects. We will take a generic approach since the results here apply equally to the

cases of similarity, compromise and asymmetric dominance effects.

We start with the choice environment outlined in Section Ternary-ternary effects,

where U is a universe of objects including a, b, a′ and b′. The relevant choice sets are

{a, b}, {a, b, a′} and {a, b, b′}. The presence of object a′ is supposed to favour the choice of
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p(1)
xz = 0.8, p(1)

yz = 0.8 p(2)
xz = 0.2, p(2)

yz = 0.2 pxz = 0.5, pyz = 0.5

P
(1)
T (x) P

(1)
T (y) P

(1)
T (z) P

(2)
T (x) P

(2)
T (y) P

(2)
T (z) PT (x) PT (y) PT (z)

Sx 0.42 0.47 0.11 Sx 0.12 0.19 0.69 Sxy 0.27 0.33 0.40

Sx 0.42 0.47 0.11 ��S 0.18 0.17 0.65 Sxy 0.30 0.32 0.38

Sx 0.42 0.47 0.11 ��S 0.32 0.15 0.53 Sy 0.37 0.31 0.32

��S 0.45 0.45 0.10 ��S 0.17 0.17 0.66 Sxy 0.31 0.31 0.38

��S 0.45 0.45 0.10 ��S 0.15 0.31 0.54 Sx 0.30 0.38 0.32
Table 8

Patterns of occurrence of weak similarity effects in two individual RCS and their population

RCS.

a; the presence of b′, the choice of b.

The 3-3 effect pertains to the two ternary choice probability vectors P{a,b,a′}(·) and

P{a,b,b′}(·). The effect region is defined by the following inequalities, both of which must

hold for the effect to occur:

P{a,b,a′}(a) > P{a,b,b′}(a), (5) P{a,b,a′}(b) < P{a,b,b′}(b). (6)

Related to this 3-3 effect are two distinct 2-3 effects, one of them a constraint on

P{a,b,a′}(·) and pab and the other, a constraint on P{a,b,b′}(·) and pab. Each of these effects

can be strong, weak or absent. The strong versions of the two effects are

P{a,b,a′}(a) > pab, (7) P{a,b,b′}(b) > pba, (8)

and the weak versions can be expressed as
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type (1), Sx type (2), Sx population, Sy

pxz 0.95 0.05 0.50

pyz 0.80 0.50 0.65

PT (x) 0.71 0.01 0.36

PT (y) 0.24 0.52 0.38

PT (z) 0.05 0.47 0.26
Table 9

Example showing two one-sided weak similarity effects (same side Sx) in two equi-probable

types, (1) and (2), aggregating to a population RCS with a one-sided weak similarity effect

on the opposite side Sy

P{a,b,a′}(a)
P{a,b,a′}(b)

>
pab

pba

, (9) P{a,b,b′}(b)
P{a,b,b′}(a) >

pba

pab

. (10)

We now establish some results that relate the occurrence of the 3-3 effect to the

occurrence and strength of the two 2-3 effects. These can be summarized as follows. If the

3-3 effect occurs, then at least one weak 2-3 effect must occur. If both strong 2-3 effects

occur, then the 3-3 effect must occur. All patterns of occurrence of the 3-3 and 2-3 effects

that are not ruled out by these two results are possible.

First we show that the 3-3 effect implies that there must be a weak 2-3 effect. If the

3-3 similarity effect occurs, then both (5) and (6) hold and therefore

P{a,b,a′}(a)
P{a,b,a′}(b)

>
P{a,b,b′}(a)
P{a,b,b′}(b)

.

The ratio pab/pba must either be less than the left-hand side of this equation, in which case

(9) holds; or greater than the right-hand side, in which case (10) holds, or both. Therefore

there must be at least one weak similarity effect.

We now show that if both strong 2-3 effects occur, then the 3-3 effect must occur. If
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Figure 4

Two individuals satisfying a two-sided weak similarity effect aggregating to a population

that fails to satisfy any two-sided weak similarity effect.

both strong 2-3 similarity effects occur, then (7) and (8) hold. Summing these two

equations gives P{a,b,a′}(a) + P{a,b,b′}(b) > 1. Using the fact that choice probabilities on

{a, b, b′} sum to one, in order to eliminate P{a,b,b′}(b), gives

P{a,b,a′}(a) > P{a,b,b′}(a) + P{a,b,b′}(b′), which implies (5). Similarly, eliminating P{a,b,a′}(a)

gives P{a,b,b′}(b) > P{a,b,a′}(b) + P{a,b,a′}(a′), which implies (6).

Table 10 shows examples of all patterns of ternary-ternary (3-3) and binary-ternary

(2-3) similarity effects that we have not just ruled out. Each row gives one example. In all

examples, the binary choice probabilities are pab = pba = 1
2 . The first column indicates

whether the 3-3 effect occurs or not. The second column gives the status of the two 2-3

effects; in each case, there is either no effect, a weak effect (understood here to mean only a

weak effect and not a strong effect) and a strong effect. The third and fourth columns

specify the probability vectors P{a,b,a′}(·) for the various examples: the third column gives

numerical values of the choice probabilities of a, b and a′, respectively, as a triple; the

fourth column gives the label identifying the point P{a,b,a′}(·) in Barycentric coordinates in

Figure 7, with the vertex on the right identified with the point a′. Similarly, the fourth and

fifth columns specify P{a,b,b′}(·). Here, the Barycentric coordinates are for P{a,b,b′}(·) and the

vertex on the right is identified with the point b′.

In addition to illustrating the values of P{a,b,a′}(·) and P{a,b,b′}(·) in the various
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Figure 5

Two individuals failing to satisfy any weak similarity effect aggregating to a population

satisfying a two-sided weak similarity effect.

examples, Figure 7 also illustrates cross-sections of the various binary-ternary effect

regions, for the fixed binary probability pab = 1
2 . A strong effect occurs for the a′ decoy

when P{a,b,a′}(·) is in the dark triangle containing Sa and S ′
a; a strong effect occurs for the

b′ decoy when P{a,b,b′}(·) is in the dark triangle containing Sb. A weak effect occurs for the

a′ decoy when P{a,b,a′}(·) is in the light triangle containing Wa and W ′
a; a weak effect occurs

for the b′ decoy when P{a,b,b′}(·) is in the light triangle containing Wb.

Theorems related to the compromise effect

We have seen that random utility is compatible with the weak one- and two-sided

compromise effects. However, Tversky and Simonson (1993) show that a random preference

satisfying a theoretically compelling ranking condition is incompatible with the weak one-

and two-sided compromise effects.

In this discussion, we take T ≡ {x, y, z} as a fixed subset of objects in the master

set U . The ranking condition is as follows:

Definition 9 (Tversky and Simonson, 1993) The random preference model ≻ on U

satisfies the ranking condition if x|y|z implies

Pr[z ≻ y ≻ x]
Pr[z ≻ x ≻ y] ≥ P

(≻)
T (y)

P
(≻)
T (x)

= Pr[y ≻ x ≻ z] + Pr[y ≻ z ≻ x]
Pr[x ≻ y ≻ z] + Pr[x ≻ z ≻ y] , (11)
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Figure 6

Two individuals satisfying the one-sided weak similarity effect Sx aggregating to a

population satisfying the opposite weak similarity effect Sy

whenever the two denominators are both non-zero. The inequality in (11) is part of the

definition of the ranking condition; the equality is true by the definition of P
(≻)
T (·), whether

or not the ranking condition holds.

The ranking condition is equivalent to the condition that when y is between x and z,

the conditional probability of the event y ≻ x given that z is ranked first is at least as great

as the conditional probability of y ≻ x given that z is not ranked first. To see this, apply

the transformation f(x) = x/(1 + x) on [0, ∞), which is strictly increasing and maps a/b to

a/(a + b), to the extreme left and right hand sides of (11). The transformed left-hand side

is the first conditional probability and the transformed right-hand side is the second.

The plausibility of the ranking condition, for y between x and z, is clearest when y

either is or vector-dominates a convex combination of x and z in attribute space. We

conjecture that in this case, many readers would consider counter-intuitive any preference

order where y is ranked last in {x, y, z}; no preference over the attribute space satisfying

both monotonicity and strict convexity can rank y last in {x, y, z}.

Random preference and the ranking condition together imply the following

between-ness inequality.

Definition 10 (Tversky and Simonson, 1993) A RCS P on U satisfies the
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3-3 2-3 P{a,b,a′}(·) label P{a,b,b′}(·) label

yes 2 strong (0.55, 0.10, 0.35) Sa (0.10, 0.55, 0.35) Sb

yes 1 strong, 1 weak (0.35, 0.30, 0.35) Wa (0.10, 0.55, 0.35) Sb

yes 1 strong (0.30, 0.35, 0.35) Na (0.10, 0.55, 0.35) Sb

yes 2 weak (0.35, 0.30, 0.35) Wa (0.20, 0.45, 0.35) Wb

yes 1 weak (0.30, 0.35, 0.35) Na (0.20, 0.45, 0.35) Wb

no 1 strong, 1 weak (0.35, 0.30, 0.35) Wa (0.40, 0.55, 0.05) S ′
b

no 1 strong (0.30, 0.35, 0.35) Na (0.40, 0.55, 0.05) S ′
b

no 2 weak (0.35, 0.30, 0.35) Wa (0.15, 0.25, 0.60) W ′
b

no 1 weak (0.30, 0.35, 0.35) Na (0.15, 0.25, 0.60) W ′
b

no no effect (0.30, 0.35, 0.35) Na (0.40, 0.25, 0.35) Nb

Table 10

Examples of all possible combinations of ternary-ternary (3-3) and binary-ternary (2-3)

similarity effects. In all examples, pab = pba = 1
2 . The 3-3 effect is either present (yes in

first column) or not (no). The two 2-3 effects can be both strong, one strong and one weak,

one strong, two weak, one weak or both absent. Label refer to the labels of points in Figure

7 specifying P{a,b,a′}(·) (column four) or P{a,b,a′}(·) (column six).

between-ness inequality if

x|y|z ⇒ pyx ≥ PT (y)
PT (y) + PT (x) . (12)

Theorem 1 (Tversky and Simonson, 1993) Let ≻ be a random preference on U .

Then if the ranking condition holds, P (≻) satisfies the between-ness inequality.

Note that the set of RCSs satisfying (12) is the complement of the effect region of

the two-sided weak compromise effect. Recall also the symmetry of the between-ness

relation: x|y|z implies z|y|x. Thus if x|y|z and the random preference ≻ satisfies the

ranking condition and then we have not only (12) but also, through z|y|x,
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Figure 7

Points representing P{a,b,a′}(·) or P{a,b,b′}(·) in the various examples of Section Theorems

relating binary-ternary and ternary-ternary context effects. The labels of points in this

figure correspond to the labels in Table 10.

pyz ≥ PT (y)/(PT (y) + PT (z)). Together, these two conditions are precisely the condition

that there is no one- or two-sided weak compromise effect.

Conclusions

We presented a comprehensive ‘field guide’ for evaluating three common context

effects: similarity, compromise, and asymmetric dominance. We presented precise

definitions for these effects and how they relate to standard properties of choice, such as

regularity. Our field guide is ‘illustrated’ in the sense that it offers graphical comparisons of

how these context effects, and related choice properties, constrain choice probabilities. This

offers a concrete way to think about parsimony when developing theories and empirical

tests. We also summarized existing theorems on these context effects as well as offering a

series of new theoretic results.

Our consideration of context effects focused exclusively on systems of choice

probabilities. In other words, the probability of selecting one alternative from a set was

treated as a primitive, without requiring the choice probabilities to be generated by a
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model of multi-alternative, multi-attribute choice. Future work could explore how the

definitions and results we’ve provided interact with and/or constrain prominent models of

multi-alternative, multi-attribute choice. Please see Turner et al. (2018) for a

comprehensive analysis of competing models of multi-alternative, multi-attribute choice

under context effects (also see Trueblood, 2022, and the references therein).

All of the context effects we’ve considered in the current work are defined via order

constraints on systems of choice probabilities. Recent advances in order-constrained

statistical analysis and related software now allow researchers to test these definitions

directly, without requiring an explicit model of multi-alternative, multi-attribute choice.

For example, Heck and Davis-Stober (2019) provide a general Bayesian approach for

evaluating choice under general linear and ordinal constraints, which includes an R (Team

et al., 2013) package (also see Regenwetter et al., 2014; Zwilling et al., 2019). We also

direct the reader to Katsimpokis et al. (2022) for a novel Bayesian approach for testing

context effects. Future work could consider extending the approach of Katsimpokis et al.

to the additional formulations we consider here.

In synthesizing the disparities in the context effects literature, Spektor et al. (2021)

drew a distinction between ‘deliberative models’ and ‘representation models.’ The idea

being that the observed fragility of some context effects may likely depend upon how choice

alternatives are cognitively represented, perhaps independently of the process in which the

representations are evaluated. Our theoretic results, and those related to random utility in

particular, may be useful in further exploring how deliberative formulations may or may

not lead to context effects, depending upon the nature of the stimuli representation.

In the present work, we identified multiple discrepant context effect definitions, such

as weak versus strong effects, 2-3 versus 3-3 comparisons, and the implications thereof.

Future work could consider a broader meta-analysis of the empirical literature on context

effects, examining which definitions were used, whether the analyses were individual or

population-based, and the resulting consequences for prominent multi-alternative,
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multi-attribute models of choice.
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