

Faculté des arts et des sciences

Département de sciences économiques

EXAMEN FINAL

Mercredi 22 décembre 2021, de 13h à 16h

ECN 7060A

PROBABILITÉ POUR ÉCONOMISTES

AUTOMNE 2021

Professeur: William MCCAUSLAND

Directives pédagogiques : Une page (format lettre) de documentation **permise**.

Pondération: Cet examen compte pour 40% de la note finale.

Une variable aléatoire X suit une loi Poisson $(X \sim Po(\lambda))$ avec paramètre $\lambda > 0$ si

$$P({X = k}) = \frac{e^{-\lambda} \lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

Dans ce cas, $E[X] = \lambda$ et $Var[X] = \lambda$.

Une variable aléatoire Y suit une loi Gamma $(Y \sim \text{Ga}(\alpha, \beta))$ avec paramètres $\alpha > 0$ et $\beta > 0$ si elle a la densité

 $f(y) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta y} \quad y > 0.$

Dans ce cas, $E[Y] = \alpha/\beta$.

- 1. (35 points) Soit $X_1, \ldots, X_n \sim \text{iid Po}(\lambda)$.
 - (a) Montrez que $E[X_i] = \lambda$.
 - (b) Trouvez une statistique exhaustive minimale pour λ et démontrez qu'elle est exhaustive et minimale.
 - (c) Trouvez l'estimateur maximum de vraisemblance $\hat{\lambda}_{MV}$ pour λ et calculez son biais, sa variance et son erreur carrée moyenne.
 - (d) Trouvez l'espérance de la fonction de score.
 - (e) Démontrez que $\hat{\lambda}_{MV}$ est efficace.
 - (f) Démontrez que $\hat{\lambda}_{MV} \stackrel{p}{\to} \lambda$.
 - (g) Supposez que $\lambda \sim Ga(\alpha, \beta)$ et qu'on observe $x = (x_1, \dots, x_n)$.
 - i. Trouvez la moyenne a posteriori $\hat{\lambda}_B$ de λ et trouvez son biais comme estimateur de λ .
 - ii. Décrivez comment trouver un intervalle de haute probabilité postérieure 1α . Décrivez brièvement l'évènement conditionnel qui a la probabilité (1α)

- 2. (10 points) Soit X_1, X_2, \ldots , des variables aléatoires iid, avec $X_i \sim U(0, \theta)$. On observe la réalisation $x \equiv (x_1, \ldots, x_n)$ de $X \equiv (X_1, \ldots, X_n)$. Trouvez la fonction de score et son espérance.
- 3. (10 points) Soit W_n une suite d'estimateurs qui converge en probabilité à un paramètre scalaire θ . Soit b_n une suite de constantes réelles telle que $\lim_{n\to\infty}b_n=0$. Montrez que W_n+b_n est une séquence d'estimateurs qui converge en probabilité à θ .
- 4. (35 points) Soit X_1, \ldots, X_n des variables aléatoires iid, ayant une loi $N(\mu, 1)$, où μ est inconnu.
 - (a) Trouvez la statistique LRT pour le test de l'hypothèse nulle $H_0: \mu = \mu_0$ contre l'hypothèse alternative $H_1: \mu \neq \mu_0$.
 - (b) Utilisez cette statistique LRT pour construire un test de niveau α de l'hypothèse nulle.
 - (c) Invertissez ce test pour construire un intervalle de confiance pour μ avec probabilité de couverture $1-\alpha$. Décrivez brièvement l'évènement qui a la probabilité $(1-\alpha)$.
 - (d) Soit $T = n^{-1} \sum_{i=1}^{n} X_i$. Quelle est la loi de T pour μ donné?
 - (e) Soit $F_T(t; \mu)$ la fonction de répartition de T, selon la valeur de μ . Montrez que la quantité $F_T(T; \mu)$ est pivotale et utilisez-la pour construire un intervalle de confiance pour μ avec probabilité de couverture 1α .
- 5. (10 points) Soit (Ω, \mathcal{F}, P) un espace de probabilité avec $\Omega = \{a, b, c, d\}, \mathcal{F} = 2^{\Omega}, P$ telle que $P(\{a\}) = P(\{b\}) = P(\{c\}) = 1/3$ et $P(\{d\}) = 0$. Soit X et Y les variables aléatoires définies par

$$X(\omega) = \begin{cases} 1 & \omega = a, \\ 2 & \omega \in \{b, c\}, \\ 3 & \omega = d; \end{cases} Y(\omega) = \begin{cases} 4 & \omega \in \{a, b\}, \\ 5 & \omega \in \{c, d\}. \end{cases}$$

- (a) Décrivez $P(\{b,c\}|Y)$ (sans preuve). Est-elle unique?
- (b) Décrivez E[X|Y] (sans preuve). Est-elle unique?
- (c) Décrivez $P(\{a\}|X)$ (sans preuve). Est-elle unique?